A. | $\frac{1}{4}\overrightarrow{AB}-\frac{3}{4}\overrightarrow{AC}$ | B. | $\frac{1}{4}\overrightarrow{AB}+\frac{3}{4}\overrightarrow{AC}$ | C. | $\frac{3}{4}\overrightarrow{AB}-\frac{1}{4}\overrightarrow{AC}$ | D. | $\frac{3}{4}\overrightarrow{AB}+\frac{1}{4}\overrightarrow{AC}$ |
分析 取BC的中點E,則D為CE的中點,用$\overrightarrow{AB},\overrightarrow{AC}$表示出$\overrightarrow{AE}$即可得出$\overrightarrow{AD}$關(guān)于$\overrightarrow{AB},\overrightarrow{AC}$的不等式.
解答 解:∵$\overrightarrow{BC}=-4\overrightarrow{CD}$,∴D是BC的靠近C點的四等分點,
取BC的中點E,則D為CE的中點,
∴$\overrightarrow{AE}$=$\frac{1}{2}\overrightarrow{AB}+\frac{1}{2}\overrightarrow{AC}$,$\overrightarrow{AD}=\frac{1}{2}\overrightarrow{AE}+\frac{1}{2}\overrightarrow{AC}$,
∴$\overrightarrow{AD}$=$\frac{1}{4}$$\overrightarrow{AB}$+$\frac{3}{4}$$\overrightarrow{AC}$.
故選B.
點評 本題考查了平面向量的幾何運算,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | -1 | C. | 1 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{15}{2}$ | B. | -$\frac{15}{2}$ | C. | 15 | D. | -15 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | f(9)-1<f(4)<f(1)+1 | B. | f(1)+1<f(4)<f(9)-1 | C. | f(5)+2<f(4)<f(1)-1 | D. | f(1)-1<f(4)<f(5)+2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com