如圖,已知A為平面BCD外一點,M,N,G分別是△ABC、△ABD、△BCD的重心,求證:平面MNG∥平面ACD.
考點:平面與平面平行的判定
專題:空間位置關系與距離
分析:連接AM,AN,并延長分別交BC,BD與D,E,由三角形重心的性質得到AM:AD=AN:AE=2:3,進一步得到MN∥CD,
同理MG∥CD,結合面面平行的判定定理可證.
解答: 證明:連接AM,AN,并延長分別交BC,BD與D,E,
因為M,N,G分別是△ABC、△ABD、△BCD的重心,
所以AM:AD=AN:AE=2:3,
所以MN∥DE,又DE∥CD,
所以MN∥CD,
又MN?平面ACD,CD?平面ACD,
所以MN∥平面ACD.
同理MG∥AD,得到MG∥平面ACD,
又MN∩MG=M,
所以平面MNG∥平面ACD.
點評:本題考查了面面平行的判定定理的運用;一般的,要證面面平行只要證線面平行,進一步只要證線線平行,體現(xiàn)了轉化的思想.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=x-ex的零點個數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某校甲、乙兩個班級各有5名編號為1,2,3,4,5的學生進行投籃練習,每人投10次,
投中的次數(shù)如下表:
學生1號2號3號4號5號
甲班67787
乙班67679
則以上兩組數(shù)據(jù)的方差中較小的一個為s2=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

畫出函數(shù)y=
4(x2+2x+1)2
+
3(x-1)3
的圖象.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知橢圓
x2
32
+
y2
16
=1內有一點B(2,2),F(xiàn)1、F2是其左、右焦點,M為橢圓上的動點,則|
MF1
|+|
MB
|的最小值為(  )
A、4
2
B、6
2
C、4
D、6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一個幾何體的三視圖及部分度量值如圖所示,其中,正視圖與側視圖都是由一個正方形和一個等腰三角形組成,俯視圖是一個圓.
(1)判斷該幾何體的結構特征,并求其表面積;
(2)如果正視圖中的點P是其所在線段的中點,點Q是其所在正方形的頂點,試求:在原幾何體的側面上,從P點到Q點的最短路徑的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

三角形的一邊長為
39
,這條邊所對的角為60°,另兩邊之比為3:4,則這個三角形的面積為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合M=|(x,y)|y=f(x)|,若對任意P1(x1,y1)∈M,均不存在P2(x2,y2)∈M,使得x1x2+y1y2=0成立,則稱集合M為“好集合”,給出下列五個集合:
①M={(x,y)|y=
1
x
 };  
②M={(x,y)|y=lnx};  
③M={(x,y)|y=
1
4
 x2+1};
④M={(x,y)|(x-2)2+y2=1};
其中所有“好集合”的序號是
 
.(寫出所有正確答案的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x-1-2lnx
(1)求曲線f(x)在點(1,f(x))處的切線方程;
(2)求f(x)的單調區(qū)間.

查看答案和解析>>

同步練習冊答案