20.已知函數(shù)y=x2-lnx的一條切線是y=x-b,則b=0.

分析 求函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)的幾何意義求出切線方程即可得到結(jié)論.

解答 解:函數(shù)的定義域為(0,+∞),導(dǎo)數(shù)f′(x)=2x-$\frac{1}{x}$,
若函數(shù)y=x2-lnx的一條切線是y=x-b,
則此切線斜率k=1,
由f′(x)=2x-$\frac{1}{x}$=1得2x2-x-1=0,得x=1或x=$-\frac{1}{2}$(舍),
當(dāng)x=1時,y=1-ln1=1,即切點坐標(biāo)為(1,1),
同時(1,1)也在y=x-b上,
∴1=1-b,則b=0,
故答案為:0

點評 本題主要考查導(dǎo)數(shù)的幾何意義的應(yīng)用,求出函數(shù)的導(dǎo)數(shù),建立切線斜率相等的關(guān)系,進行求解是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若命題“?x∈R,ax2-ax-2<0”是真命題,則實數(shù)a的取值范圍是(-8,0].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若實數(shù)x,y滿足$\left\{\begin{array}{l}x+y-3≥0\\ x-y-3≤0\\ 0≤y≤1\end{array}\right.$,則$z=\frac{2x+y}{x+y}$的最小值為( 。
A.$\frac{5}{3}$B.2C.$\frac{3}{5}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)F(x)=ex滿足F(x)=g(x)+h(x),且g(x),h(x)分別是R上的偶函數(shù)和奇函數(shù),若?x∈(0,2]使得不等式g(2x)-ah(x)≥0恒成立,則實數(shù)a的取值范圍是( 。
A.$({-∞,2\sqrt{2}})$B.$({-∞,2\sqrt{2}}]$C.$({0,2\sqrt{2}}]$D.$({2\sqrt{2},+∞})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)f(x)的圖象在點(x0,f(x0))處的切線方程l:y=g(x),若函數(shù)f(x)滿足?x∈l(其中I為函數(shù)f(x)的定義域),當(dāng)x≠x0時,[f(x)-g(x)](x-x0)>0恒成立,則稱x0為函數(shù)f(x)的“轉(zhuǎn)折點”,若函數(shù)f(x)=lnx-ax2-x在(0,e]上存在一個“轉(zhuǎn)折點”,則a的取值范圍為( 。
A.$[{\frac{1}{{2{e^2}}},+∞})$B.$({-1,\frac{1}{{2{e^2}}}}]$C.$[{-\frac{1}{{2{e^2}}},1})$D.$({-∞,-\frac{1}{{2{e^2}}}}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在平面直角坐標(biāo)系xOy中,向量$\overrightarrow{OA}$=(-1,2),$\overrightarrow{OB}$=(2,m),若O,A,B三點能構(gòu)成三角形,則( 。
A.m=-4B.m≠-4C.m≠1D.m∈R

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知數(shù)列{an}滿足a1=1,并且a2n=2an,a2n+1=an+1(n∈N*),則a5=3,a2016=192.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知等差數(shù)列{an}中,2a2+a3+a5=20,且前10項和S10=100.
(I)求數(shù)列{an}的通項公式;
(II)若$_{n}=\frac{1}{{a}_{n}{a}_{n+1}}$,求數(shù)列{bn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.由曲線y=x2和曲線y=$\sqrt{x}$圍成的一個葉形圖如圖所示,則圖中陰影部分面積為( 。
A.$\frac{1}{3}$B.$\frac{3}{10}$C.$\frac{1}{4}$D.$\frac{1}{5}$

查看答案和解析>>

同步練習(xí)冊答案