9.已知等差數(shù)列{an}中,2a2+a3+a5=20,且前10項(xiàng)和S10=100.
(I)求數(shù)列{an}的通項(xiàng)公式;
(II)若$_{n}=\frac{1}{{a}_{n}{a}_{n+1}}$,求數(shù)列{bn}的前n項(xiàng)和.

分析 (I)利用等差數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式即可得出.
(II)$_{n}=\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$,利用“裂項(xiàng)求和”方法即可得出.

解答 解:(I)設(shè)等差數(shù)列{an}的公差為d,∵2a2+a3+a5=20,且前10項(xiàng)和S10=100,
∴4a1+8d=20,$10{a}_{1}+\frac{10×9}{2}$d=100,
聯(lián)立解得a1=1,d=2.
∴an=1+2(n-1)=2n-1.
(II)$_{n}=\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$,
∴數(shù)列{bn}的前n項(xiàng)和=$\frac{1}{2}[(1-\frac{1}{3})+(\frac{1}{3}-\frac{1}{5})$+…+$(\frac{1}{2n-1}-\frac{1}{2n+1})]$
=$\frac{1}{2}(1-\frac{1}{2n+1})$
=$\frac{n}{2n+1}$.

點(diǎn)評(píng) 本題考查了等差數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式、“裂項(xiàng)求和”方法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.如圖所示的陰影部分是由底邊長(zhǎng)為1,高為1的等腰三角形及寬為1,長(zhǎng)分別為2和3的兩矩形所構(gòu)成.設(shè)函數(shù)S=S(a)(a≥0)是圖中陰影部分介于平行線y=0及y=a之間的那一部分的面積,則函數(shù)S(a)的圖象大致為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知函數(shù)y=x2-lnx的一條切線是y=x-b,則b=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知數(shù)列{an}滿足a1=511,4an=an-1-3(n≥2).
(Ⅰ)求證:數(shù)列{an+1}為等比數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)令bn=|log2(an+1)|,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{\sqrt{x-1},x≥2}\\{lo{g}_{2}({2}^{x}+1),0≤x<2}\end{array}\right.$,則f(f(1))=2,f(x)最小值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知等比數(shù)列{an}中,a2=2,a3•a4=32,那么a8的值為128.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.點(diǎn)M(x,y)是不等式組$\left\{{\begin{array}{l}{0≤x≤\sqrt{3}}\\{y≤3}\\{x≤\sqrt{3}y}\end{array}}\right.$表示的平面區(qū)域Ω內(nèi)的一動(dòng)點(diǎn),則2x-y+1的最大值是$2\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.(1)解不等式:|x-1|+|x-2|≤2.
(2)求函數(shù)$y=x\sqrt{1-{x^2}}({0<x<1})$的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知a,b是不相等的實(shí)數(shù),則下列不等式總成立的是(  )
A.$\frac{{a}^{2}+^{2}}{2}$>abB.$\frac{|a+b|}{2}$>$\sqrt{ab}$C.$\frac{a+b}{\sqrt{ab}}$>2D.$\frac{{a}^{2}+^{2}}{ab}$>2

查看答案和解析>>

同步練習(xí)冊(cè)答案