分析 (1)分類討論,解不等式,即可得出結(jié)論;
(2)f(m)+f(-$\frac{1}{m}$)=|m+a|+|m+$\frac{1}{a}$|+|-$\frac{1}{m}$+a|+|-$\frac{1}{m}$+$\frac{1}{a}$|,利用三角不等式,及基本不等式即可證明結(jié)論.
解答 解:(1)當(dāng)a=2時(shí),f(x)=|x+2|+|x+$\frac{1}{2}$|,原不等式等價(jià)于$\left\{\begin{array}{l}{x<-2}\\{-x-2-x-\frac{1}{2}>3}\end{array}\right.$
或$\left\{\begin{array}{l}{-2≤x≤-\frac{1}{2}}\\{x+2-x-\frac{1}{2}>3}\end{array}\right.$或$\left\{\begin{array}{l}{x>\frac{1}{2}}\\{x+2+x+\frac{1}{2}>3}\end{array}\right.$
解得:x<-$\frac{11}{4}$或x∈∅或$x>\frac{1}{4}$,所以不等式的解集為{x|x<-$\frac{11}{4}$或$x>\frac{1}{4}\}$…(5分)
(2)f(m)+f(-$\frac{1}{m}$)=|m+a|+|m+$\frac{1}{a}$|+|-$\frac{1}{m}$+a|+|-$\frac{1}{m}$+$\frac{1}{a}$|
=$|m+a|+|-\frac{1}{m}+a|+|m+\frac{1}{a}|+|-\frac{1}{m}+\frac{1}{a}|≥2|m+\frac{1}{m}|=2(|m|+|\frac{1}{m}|)≥4$…(10分)
點(diǎn)評(píng) 本題考查絕對值不等式的解法,考查三角不等式,及基本不等式,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(2a-x1)<f(2a-x2) | B. | f(2a-x1)>f(2a-x2) | C. | f(2a-x1)=f(2a-x2) | D. | 以上都不正確 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ¬p∨¬r | B. | ¬q∧r | C. | 僅有r | D. | p∧q |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x=$\frac{π}{3}$ | B. | x=$\frac{π}{6}$ | C. | x=-$\frac{π}{6}$ | D. | x=-$\frac{π}{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com