已知α,β均為銳角,cosα
1
7
,cos(α+β)=-
11
14
,則cosβ=
 
分析:先利用同角三角函數(shù)的基本關(guān)系求得sinα和sin(α+β)的值,然后利用cosβ=cosp[(α+β)-α],根據(jù)兩角和公式求得答案.
解答:解:α,β均為銳角,
∴sinα=
1-
1
49
=
4
3
7
,sin(α+β)=
1- (
11
14
 2
=
5
3
14

∴cosβ=cosp[(α+β)-α]=cos(α+β)cosα+sin(α+β)sinα=
1
2

故答案為
1
2
點(diǎn)評(píng):本題主要考查了兩角和公式的化簡(jiǎn)求值和同角三角函數(shù)的基本關(guān)系的應(yīng)用.熟練記憶三角函數(shù)的基本公式是解題的基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)學(xué)公式,數(shù)學(xué)公式,α,β均為銳角.
(1)求tanα;      (2)求cos(α+β).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)學(xué)公式數(shù)學(xué)公式,α,β均為銳角
(Ⅰ)求tan(α+β)的值;
(Ⅱ)求α+2β的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知tanα=4,cos(α+β)=,α,β均為銳角,求β的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分14分)

如圖,點(diǎn)B在以PA為直徑的圓周上,點(diǎn)C在線段AB上,已知,設(shè),均為銳角.

(1)求;

(2)求兩條向量的數(shù)量積的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:江蘇省2010屆三校四模聯(lián)考 題型:解答題

 

如圖,點(diǎn)B在以PA為直徑的圓周上,點(diǎn)C在線段AB上,已知,設(shè)均為銳角.

(1)求;

(2)求兩條向量的數(shù)量積的值.

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案