分析 (1)對(duì)極坐標(biāo)方程兩邊平方得出直角坐標(biāo)方程;
(2)把l的參數(shù)方程代入圓C的普通方程,利用參數(shù)的幾何意義和根與系數(shù)的關(guān)系得出.
解答 解:(1)∵ρ=2$\sqrt{5}$sinθ.∴ρ2=2$\sqrt{5}$ρsinθ,
∴圓C的直角坐標(biāo)方程為x2+y2=2$\sqrt{5}$y,即x2+(y-$\sqrt{5}$)2=5.
(2)將$\left\{\begin{array}{l}{x=3-t}\\{y=\sqrt{5}+t}\end{array}\right.$化為標(biāo)準(zhǔn)參數(shù)方程得$\left\{\begin{array}{l}{x=3-\frac{\sqrt{2}}{2}t}\\{y=\sqrt{5}+\frac{\sqrt{2}}{2}t}\end{array}\right.$,
代入x2+(y-$\sqrt{5}$)2=5得(3-$\frac{\sqrt{2}}{2}$t)2+$\frac{1}{2}$t2=5,即t2-3$\sqrt{2}$t+4=0.
∴t1+t2=3$\sqrt{2}$,t1t2=4.∴t1>0,t2>0.
∴|PA|+|PB|=t1+t2=3$\sqrt{2}$.
點(diǎn)評(píng) 本題考查了極坐標(biāo)方程與直角坐標(biāo)方程的轉(zhuǎn)化,參數(shù)方程的幾何意義,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | π | B. | $\frac{5π}{3}$ | C. | $\frac{7π}{3}$ | D. | 3π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | p>q | B. | q>p | C. | p=q | D. | p、q大小不確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com