分析 (1)直線l的參數(shù)方程為$\left\{\begin{array}{l}x=1-\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.$(t為參數(shù)),消去參數(shù)t可得普通方程.曲線C的參數(shù)方程為$\left\{\begin{array}{l}x=2cosθ\\ y=2+2sinθ\end{array}\right.$(θ為參數(shù)),利用平方關系可得直角坐標方程.把ρ2=x2+y2,y=ρsinθ,可得C的極坐標方程.
(II)P(1,0).把直線l的參數(shù)方程代入圓C的方程為:${t}^{2}-3\sqrt{2}t$+1=0,|PM|•|PN|=|t1•t2|.
解答 解:(1)直線l的參數(shù)方程為$\left\{\begin{array}{l}x=1-\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.$(t為參數(shù)),消去參數(shù)t可得:x+y-1=0.
曲線C的參數(shù)方程為$\left\{\begin{array}{l}x=2cosθ\\ y=2+2sinθ\end{array}\right.$(θ為參數(shù)),利用平方關系可得:x2+(y-2)2=4.
把ρ2=x2+y2,y=ρsinθ,可得C的極坐標方程為:ρ=4sinθ.
(II)P(1,0).把直線l的參數(shù)方程代入圓C的方程為:${t}^{2}-3\sqrt{2}t$+1=0,
t1+t2=3$\sqrt{2}$,t1•t2=1,
∴|PM|•|PN|=|t1•t2|=1.
點評 本題考查了極坐標方程的應用、參數(shù)方程化為普通方程、直線與圓相交弦長問題,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | a<0,b>0 | B. | a>0,b>0 | C. | a<0,b<0 | D. | a>0,b<0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -1 | B. | 1 | C. | 3 | D. | 7 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $({-∞,-\frac{1}{2}}]∪[{1,+∞})$ | B. | $({-∞,-1}]∪[{\frac{1}{2},+∞})$ | C. | $({-∞,0}]∪[{\frac{1}{2},+∞})$ | D. | $({-∞,-\frac{1}{2}}]∪[{0,+∞})$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | 1 | C. | -$\frac{1}{2}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [$\frac{1}{9}$,9] | B. | (-∞,$\frac{1}{9}$] | C. | [$\frac{1}{2}$,2] | D. | (0,$\frac{1}{9}$]∪[9,+∞] |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com