已知函數(shù)f(x)=lg(1-x)+lg(1+x)+x4-2x2.
(1)求函數(shù)f(x)的定義域;
(2)判斷函數(shù)f(x)的奇偶性;
(3)求函數(shù)f(x)的值域.
科目:高中數(shù)學 來源: 題型:解答題
(2014·孝感模擬)已知定義在區(qū)間[0,2]上的兩個函數(shù)f(x)和g(x),其中f(x)=-x2+2ax+1+a2,g(x)=x-+.
(1)求函數(shù)f(x)的最小值.
(2)對于?x1,x2∈[0,2],f(x1)>g(x2)恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
為了凈化空氣,某科研單位根據(jù)實驗得出,在一定范圍內(nèi),每噴灑1個單位的凈化劑,空氣中釋放的濃度y(單位:毫克/立方米)隨著時間(單位:天)變化的函數(shù)關系式近似為若多次噴灑,則某一時刻空氣中的凈化劑濃度為每次投放的凈化劑在相應時刻所釋放的濃度之和.由實驗知,當空氣中凈化劑的濃度不低于4(毫克/立方米)時,它才能起到凈化空氣的作用.
(1)若一次噴灑4個單位的凈化劑,則凈化時間可達幾天?
(2)若第一次噴灑2個單位的凈化劑,6天后再噴灑a()個單位的藥劑,要使接下來的4天中能夠持續(xù)有效凈化,試求的最小值(精確到0.1,參考數(shù)據(jù):取1.4).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
為了保護環(huán)境,某工廠在國家的號召下,把廢棄物回收轉(zhuǎn)化為某種產(chǎn)品,經(jīng)測算,處理成本(萬元)與處理量(噸)之間的函數(shù)關系可近似的表示為:
,且每處理一噸廢棄物可得價值為萬元的某種產(chǎn)品,同時獲得國家補貼萬元.
(1)當時,判斷該項舉措能否獲利?如果能獲利,求出最大利潤;
如果不能獲利,請求出國家最少補貼多少萬元,該工廠才不會虧損?
(2)當處理量為多少噸時,每噸的平均處理成本最少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)對任意的恒有成立.
(1)當b=0時,記若在)上為增函數(shù),求c的取值范圍;
(2)證明:當時,成立;
(3)若對滿足條件的任意實數(shù)b,c,不等式恒成立,求M的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
某商場若將進貨單價為8元的商品按每件10元出售,每天可銷售100件,現(xiàn)準備采用提高售價,減少進貨量的辦法來增加利潤,已知這種商品每件銷售價提高1元,銷售量就要減少10件,問該商場將銷售價每件定為多少元時,才能使得每天所賺的利潤最多?銷售價每件定為多少元時,才能保證每天所賺的利潤在300元以上?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設在海拔xm處的大氣壓強是yPa,y與x之間的函數(shù)關系為y=cekx,其中c、k為常量.已知某天的海平面的大氣壓為1.01×105Pa,1000m高空的大氣壓為0.90×105Pa,求600m高空的大氣壓強.(保留3位有效數(shù)字)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
提高過江大橋的車輛通行能力可改善整個城市的交通狀況.在一般情況下,大橋上的車流速度v(km/h)是車流密度x(輛/千米)的函數(shù).當橋上的車流密度達到200輛/km時,造成堵塞,此時車流速度為0;當車流密度不超過20輛/km時,車流速度為60km/h,研究表明:當20≤x≤200時,車流速度v是車流密度x的一次函數(shù).
(1)當0≤x≤200時,求函數(shù)v(x)的表達式;
(2)當車流密度x為多大時,車流量(單位時間內(nèi)通過橋上某觀測點的車輛數(shù),單位:輛/小時)f(x)=x·v(x)可以達到最大,并求出其最大值.(精確到1輛/小時)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知某物體的溫度θ(單位:攝氏度)隨時間t(單位:分鐘)的變化規(guī)律是:θ=m·2t+21-t(t≥0,且m>0).
(1)如果m=2,求經(jīng)過多少時間,物體的溫度為5攝氏度.
(2)若物體的溫度總不低于2攝氏度,求m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com