分析 先對三角函數(shù)作歸一運(yùn)算,再由x得范圍,得到函數(shù)圖象,由此得到m的范圍.
解答 解:2sin2x-$\sqrt{3}$sin2x+m-1=-cos2x-$\sqrt{3}$sin2x+m
=-2sin(2x+$\frac{π}{6}$)+m,
∵x∈[0,$\frac{π}{2}$],
∴(2x+$\frac{π}{6}$)∈[$\frac{π}{6}$,$\frac{7π}{6}$],
∴y=-2sin(2x+$\frac{π}{6}$)∈[-2,1],
要使方程2sin2x-$\sqrt{3}$sin2x+m-1=0在x∈[0,$\frac{π}{2}$]上有兩個(gè)不同的實(shí)數(shù)根,
得到1≤m<2.
故答案為:1≤m<2.
點(diǎn)評 本題考查三角函數(shù)的歸一運(yùn)算以及三角函數(shù)的圖象.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1,4 | B. | 3,$\frac{1}{2}$ | C. | $\frac{1}{2},-\frac{5}{4}$ | D. | 3,$-\frac{5}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)=x2-1 | B. | f(x)=2x+1 | ||
C. | f(x)=$\left\{\begin{array}{l}{{x}^{2}+1(x>1)}\\{{x}^{2}-1(x≤1)}\end{array}\right.$ | D. | f(x)=2x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | an=2n-3 | B. | an=2n-4 | C. | an=3-3n | D. | an=2n-5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com