【題目】已知橢圓的右焦點(diǎn)為,左頂點(diǎn)為

1)求橢圓的方程;

2)過點(diǎn)作兩條相互垂直的直線分別與橢圓交于(不同于點(diǎn)的)兩點(diǎn).試判斷直線軸的交點(diǎn)是否為定點(diǎn),若是,求出定點(diǎn)坐標(biāo);若不是,請(qǐng)說明理由.

【答案】(1)橢圓的方程為;(2)直線軸的交點(diǎn)是定點(diǎn),坐標(biāo)為.

【解析】試題分析:1)由已知得 橢圓的方程為

2①當(dāng)直線軸垂直時(shí) 的方程為聯(lián)立直線軸的交點(diǎn)為②當(dāng)直線不垂直于軸時(shí)設(shè)直線的方程為聯(lián)立由題意知

直線軸的交點(diǎn)為.

試題解析:

1)由已知得

所以橢圓的方程為

2①當(dāng)直線軸垂直時(shí),直線的方程為

聯(lián)立解得

此時(shí)直線的方程為直線軸的交點(diǎn)為

②當(dāng)直線不垂直于軸時(shí),設(shè)直線的方程為

聯(lián)立

設(shè)

由題意知,

解得

當(dāng)時(shí),滿足直線的方程為此時(shí)與軸的交點(diǎn)為故直線軸的交點(diǎn)是定點(diǎn),坐標(biāo)為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知公差大于零的等差數(shù)列的前項(xiàng)和為,且,

(1)求數(shù)列的通項(xiàng)公式;

(2)若數(shù)列是等差數(shù)列,且,求非零常數(shù)的值.

(3)設(shè),為數(shù)列的前項(xiàng)和,是否存在正整數(shù),使得對(duì)任意的成立?若存在求出的最小值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知下圖中,四邊形 ABCD是等腰梯形, ,O、Q分別為線段ABCD的中點(diǎn),OQEF的交點(diǎn)為P,OP=1,PQ=2,現(xiàn)將梯形ABCD沿EF折起,使得,連結(jié)AD、BC,得一幾何體如圖所示.

(Ⅰ)證明:平面ABCD平面ABFE;

(Ⅱ)若上圖中, ,CD=2,求平面ADE與平面BCF所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=的值域是[0,+∞),則實(shí)數(shù)m的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某家具廠有方木料,五合板,準(zhǔn)備加工成書桌和書櫥出售.已知生產(chǎn)每張書桌需要方木料、五合板;生產(chǎn)每個(gè)書櫥需要方木枓、五合板.出售一張書桌可獲利潤元,出售一個(gè)書櫥可獲利潤元,怎樣安排生產(chǎn)可使所得利潤最大?最大利潤為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知奇函數(shù)f(x)在(﹣∞,0)上單調(diào)遞減,且f(2)=0,則不等式xf(x﹣1)>0的解集是(
A.(﹣3,﹣1)
B.(﹣3,1)∪(2,+∞)
C.(﹣3,0)∪(3,+∞)
D.(﹣1,0)∪(1,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若在區(qū)間上單調(diào)遞增,求實(shí)數(shù)的取值范圍;

(2)若存在唯一整數(shù),使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=lgx+1(1≤x≤100),則g(x)=f2(x)+f(x2)的值域?yàn)椋?/span>
A.[﹣2,7]
B.[2,7]
C.[﹣2,14]
D.[2,14]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩家商場(chǎng)對(duì)同一種商品開展促銷活動(dòng),對(duì)購買該商品的顧客兩家商場(chǎng)的獎(jiǎng)勵(lì)方案如下:

甲商場(chǎng):顧客轉(zhuǎn)動(dòng)如圖所示圓盤,當(dāng)指針指向陰影部分(圖中四個(gè)陰影部分均為扇形,且每個(gè)扇形圓心角均為15°,邊界忽略不計(jì)) 即為中獎(jiǎng).

乙商場(chǎng):從裝有3個(gè)白球3個(gè)紅球的盒子中一次性摸出2個(gè)球(球除顏色外不加區(qū)分),如果摸到的是2個(gè)紅球,即為中獎(jiǎng).

問:購買該商品的顧客在哪家商場(chǎng)中獎(jiǎng)的可能性大?

查看答案和解析>>

同步練習(xí)冊(cè)答案