【題目】已知橢圓的左頂點為,右焦點為,直線與軸相交于點,且是的中點.
(Ⅰ)求橢圓的離心率;
(Ⅱ)過點的直線與橢圓相交于兩點,都在軸上方,并且在之間,且到直線的距離是到直線距離的倍.
①記的面積分別為,求;
②若原點到直線的距離為,求橢圓方程.
【答案】(1);(2)①;②.
【解析】
試題本題以直線與橢圓的位置關(guān)系為背景.第(1)小題設(shè)計為求橢圓的離心率,只需利用條件是的中點,可得,從而得.第(2)小題中第①題求,需要用等積法進行轉(zhuǎn)化,即.第②題求橢圓方程,設(shè)直線方程為.注意到,和原點到直線的距離為,,從而可以確定,,的值.
試題解析:(1)因為是的中點,所以,即,又、,
所以,所以;
(2)①解法一:過作直線的垂線,垂足分別為,依題意,,
又,故,故是的中點,∴,
又是中點,∴,∴;
解法二:∵,∴,橢圓方程為,,,
設(shè),,點在橢圓上,即有,
同理,
又,故得是的中點,∴,
又是中點,∴,∴;
②解法一:設(shè),則橢圓方程為,
由①知是的中點,不妨設(shè),則,
又都在橢圓上,即有 即
兩式相減得:,解得,
可得,故直線的斜率為,
直線的方程為,即
原點到直線的距離為,
依題意,解得,故橢圓方程為.
解法二:設(shè),則橢圓方程為,
由①知是的中點,故,
直線的斜率顯然存在,不妨設(shè)為,故其方程為,與橢圓聯(lián)立,并消去得:,整理得:,(*)
設(shè),,依題意: ]
由 解得:
所以,解之得:,即.
直線的方程為,即
原點到直線的距離為,
依題意,解得,故橢圓方程為.
科目:高中數(shù)學 來源: 題型:
【題目】隨著城市地鐵建設(shè)的持續(xù)推進,市民的出行也越來越便利.根據(jù)大數(shù)據(jù)統(tǒng)計,某條地鐵線路運行時,發(fā)車時間間隔t(單位:分鐘)滿足:4≤t≤15,N,平均每趟地鐵的載客人數(shù)p(t)(單位:人)與發(fā)車時間間隔t近似地滿足下列函數(shù)關(guān)系:,其中.
(1)若平均每趟地鐵的載客人數(shù)不超過1500人,試求發(fā)車時間間隔t的值.
(2)若平均每趟地鐵每分鐘的凈收益為(單位:元),問當發(fā)車時間間隔t為多少時,平均每趟地鐵每分鐘的凈收益最大?井求出最大凈收益.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,D,E分別為AB,AC的中點,O為DE的中點,AB=AC=2,BC=4.將△ADE沿DE折起到△A1DE的位置,使得平面A1DE平面BCED,如下圖.
(Ⅰ)求證:A1OBD;
(Ⅱ)求直線A1C和平面A1BD所成角的正弦值;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知的實常數(shù),函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若函數(shù)有兩個不同的零點,
(ⅰ)求實數(shù)的取值范圍;
(ⅱ)證明: .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在以、、、、、為頂點的五面體中,平面平面,,四邊形為平行四邊形,且.
(1)求證:;
(2)若,,直線與平面所成角為,求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】[選修4-4:坐標系與參數(shù)方程]
在直角坐標系中,曲線:(,為參數(shù)).在以坐標原點為極點,軸的正半軸為極軸的極坐標系中,曲線:.
(1)說明是哪一種曲線,并將的方程化為極坐標方程;
(2)若直線的方程為,設(shè)與的交點為,,與的交點為,,若的面積為,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某機構(gòu)為了了解不同年齡的人對一款智能家電的評價,隨機選取了50名購買該家電的消費者,讓他們根據(jù)實際使用體驗進行評分.
(Ⅰ)設(shè)消費者的年齡為,對該款智能家電的評分為.若根據(jù)統(tǒng)計數(shù)據(jù),用最小二乘法得到關(guān)于的線性回歸方程為,且年齡的方差為,評分的方差為.求與的相關(guān)系數(shù),并據(jù)此判斷對該款智能家電的評分與年齡的相關(guān)性強弱.
(Ⅱ)按照一定的標準,將50名消費者的年齡劃分為“青年”和“中老年”,評分劃分為“好評”和“差評”,整理得到如下數(shù)據(jù),請判斷是否有的把握認為對該智能家電的評價與年齡有關(guān).
好評 | 差評 | |
青年 | 8 | 16 |
中老年 | 20 | 6 |
附:線性回歸直線的斜率;相關(guān)系數(shù),獨立性檢驗中的,其中.
臨界值表:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,在平行四邊形ABCD中,,,,點E是CD邊的中點,將沿AE折起,使點D到達點P的位置,且.
(1)求證;平面平面ABCE;
(2)求點E到平面PAB的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com