【題目】已知橢圓: ,過點作圓的切線,切點分別為, ,直線恰好經(jīng)過橢圓的右頂點和上頂點.
(Ⅰ)求橢圓的方程;
(Ⅱ)如圖,過橢圓的右焦點作兩條互相垂直的弦, ,設(shè), 的中點分別為, ,證明:直線必過定點,并求此定點坐標(biāo).
【答案】(1)(2)直線過點.
【解析】試題分析:(1)先根據(jù)直線與圓相切求切線方程,再根據(jù)橢圓幾何條件確定, ,(2)直線過定點問題,一般先利用特殊情況確定定點,轉(zhuǎn)化為證三點共線:先聯(lián)立直線: ,與橢圓方程,利用韋達(dá)定理及中點坐標(biāo)公式求中點(用直線AB斜率表示),同理可得點坐標(biāo),利用兩點斜率公式證三點共線.
試題解析:(Ⅰ)由切點弦方程知切線方程為,令,則,所以上頂點的坐標(biāo)為,
所以,令,則,
所以右頂點的坐標(biāo)為,所以,所以橢圓的方程為.
(Ⅱ)若直線, 斜率均存在,設(shè)直線: , , ,
則中點.先考慮的情形.
由得,
由直線過點,可知判別式恒成立,
由韋達(dá)定理,得,故,同理可得.
若,得,則直線斜率不存在,此時直線過點.
另當(dāng)斜率為0時,直線也過點.
下證動直線過定點,
, ,
∴,即直線過點.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}前n項和Sn滿足:2Sn+an=1
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn= ,數(shù)列{bn}的前n項和為Tn , 求證:Tn< .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,已知直線的普通方程為,曲線的參數(shù)方程為(為參數(shù)),設(shè)直線與曲線交于, 兩點.
(Ⅰ)求線段的長;
(Ⅱ)已知點在曲線上運動,當(dāng)的面積最大時,求點的坐標(biāo)及的最大面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}為等差數(shù)列,公差d≠0,其中 , ,…, 恰為等比數(shù)列,若k1=1,k2=5,k3=17,求k1+k2+…+kn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列的前n項和為,,且對任意正整數(shù)n,點(,)在直線上.
(1)求數(shù)列的通項公式;
(2)是否存在實數(shù)λ,使得數(shù)列{ }為等差數(shù)列?若存在,求出λ的值;若不存在,請說明理由;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】自2016年下半年起六安市區(qū)商品房價不斷上漲,為了調(diào)查研究六安城區(qū)居民對六安商品房價格承受情況,寒假期間小明在六安市區(qū)不同小區(qū)分別對50戶居民家庭進行了抽查,并統(tǒng)計出這50戶家庭對商品房的承受價格(單位:元/平方),將收集的數(shù)據(jù)分成, , , , 五組(單位:元/平方),并作出頻率分布直方圖如圖:
(Ⅰ)試根據(jù)頻率分布直方圖估計出這50戶家庭對商品房的承受價格平均值(單位:元/平方);
(Ⅱ)為了作進一步調(diào)查研究,小明準(zhǔn)備從承受能力超過4000元/平方的居民中隨機抽出2戶進行再調(diào)查,設(shè)抽出承受能力超過8000元/平方的居民為戶,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在梯形中, , . ,且平面, ,點為上任意一點.
(1)求證: ;
(2)點在線段上運動(包括兩端點),若平面與平面所成的銳二面角為60°,試確定點的位置.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓關(guān)于直線對稱,圓心在第二象限,半徑為.
(Ⅰ)求圓的方程.
(Ⅱ)是否存在直線與圓相切,且在軸、軸上的截距相等?若存在,寫出滿足條件的直線條數(shù)(不要求過程);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知直線的參數(shù)方程為(為參數(shù), ),以坐標(biāo)原點為極點, 軸正半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為.
(Ⅰ)討論直線與圓的公共點個數(shù);
(Ⅱ)過極點作直線的垂線,垂足為,求點的軌跡與圓相交所得弦長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com