在直角坐標(biāo)系xoy中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,已知某圓的極坐標(biāo)方程為:p2-4pcosθ+2=0
(1)將極坐標(biāo)方程化為普通方程
(2)若點(diǎn)P(x,y)在該圓上,求x+y的最大值和最小值.
考點(diǎn):簡(jiǎn)單曲線的極坐標(biāo)方程
專題:坐標(biāo)系和參數(shù)方程
分析:(1)ρ2-4ρcosθ+2=0,利用
ρ2=x2+y2
x=ρcosθ
即可化為直角直角坐標(biāo)方程;
(2)由x2+y2-4x+2=0化為(x-2)2+y2=2,令x-2=
2
cosα,y=
2
sinα,α∈[0,2π).可得x+y=
2
cosα
+2+
2
sinα
=2sin(α+
π
4
)
+2,利用正弦函數(shù)的單調(diào)性即可得出.
解答: 解:(1)ρ2-4ρcosθ+2=0,化為直角直角坐標(biāo)方程:x2+y2-4x+2=0;
(2)由x2+y2-4x+2=0化為(x-2)2+y2=2,
令x-2=
2
cosα,y=
2
sinα,
α∈[0,2π).
則x+y=
2
cosα
+2+
2
sinα

=2sin(α+
π
4
)
+2,
sin(α+
π
4
)
∈[-1,1],
∴(x+y)∈[0,4].
其最大值、最小值分別為4,0.
點(diǎn)評(píng):本題考查了把極坐標(biāo)方程化為直角坐標(biāo)方程、圓的參數(shù)方程、三角函數(shù)的單調(diào)性,考查了計(jì)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

曲線f(x)=x2•(x-2)+1在點(diǎn)(1,f(1))處的切線方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖1,已知四邊形ABCD的對(duì)角線AC與BD互相垂直,∠A=60°,∠C=90°,CD=CB=2,將△ABD沿BD折起,得到三棱錐A′-BCD,如圖2.
(1)若二面角A′-BD-C的余弦值為
3
3
,求證:A′C⊥平面BCD;
(2)當(dāng)三棱錐A′-BCD的體積最大時(shí),求直線A′D與平面A′BC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)滿足f(3x+1)=9x2-6x+5.
(1)求f(x)的解析式;
(2)求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
x2
8
-lnx,x∈[1,3]
(Ⅰ)求f(x)的最大值與最小值
(Ⅱ)若任意x∈[1,3],t∈[0,2],有f(x)<4-at恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知在四邊形ABCD中,∠BAD+∠BCD=π,AB=6,BC=CD=4,AD=2,求BD的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,若a=2,b+c=7,cosB=-
1
4
,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)有一個(gè)均勻的陀螺,其圓周的一半上均勻的刻上[0,1]上的諸數(shù)字,另一半上均勻地刻上區(qū)間[1,3]上的數(shù)字,旋轉(zhuǎn)陀螺,求:它停下來(lái)時(shí),其圓周上觸及桌面的刻度位于[0.5,1.5]上的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)y=
1
1+2sinx
的定義域.

查看答案和解析>>

同步練習(xí)冊(cè)答案