18.設(shè)函數(shù)f(x)=sin2x-cos2x-4sin(x+$\frac{π}{4}$)sin(x-$\frac{π}{4}$)
(1)化簡f(x)并寫出最大值與最小值
(2)△ABC中,f(B)=-$\frac{1}{2}$,b=2,求ac的最大值.

分析 (1)將函數(shù)進(jìn)行化簡,結(jié)合三角函數(shù)的圖象和性質(zhì)即可求函數(shù)f(x)圖象的最值.
(2)由(1)求出f(B)的解析式,由f(B)=-$\frac{1}{2}$解出B的大小,再利用正弦定理或者基本不等式即可求出ac的最大值.

解答 解:∵f(x)=sin2x-cos2x-4sin(x+$\frac{π}{4}$)sin(x-$\frac{π}{4}$)
?f(x)=-cos2x-4sin(x+$\frac{π}{4}$)cos(x+$\frac{π}{4}$)
?f(x)=-cos2x-2sin(2x$+\frac{π}{2}$)
?f(x)=-cos2x+2cos2x
∴f(x)=cos2x,
又∵cosx正弦函數(shù)的最大值為1,最小值為-1,
所以f(x)的最大值為1,最小值為-1.
(2)由(1)得f(x)=cos2x
∴$f(B)=cos2B=-\frac{1}{2}$,
解得:2B=120°,即B=60°
由余弦定理得:4=a2+c2-ac,
又a2+c2≥2ac,∴ac≤4,(當(dāng)且僅當(dāng)a=c時(shí)取等號(hào))
所以:ac的最大值為4.

點(diǎn)評(píng) 本題主要考查三角函數(shù)的圖象和性質(zhì),利用正弦定理或者基本不等式求最值問題.三角函數(shù)公式將函數(shù)進(jìn)行化簡是解決本題的關(guān)鍵.屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知sinθ和cosθ為方程$2{x^2}-(\sqrt{3}+1)x+m=0$的兩根,求
(1)$\frac{sinθ}{{1-\frac{1}{tanθ}}}+\frac{cosθ}{1-tanθ}$;
(2)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.將11011(2)轉(zhuǎn)化為十進(jìn)制的數(shù)是27.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)f0(x)=cosx,${f_1}(x)=f_0^'(x)$,${f_2}(x)=f_1^'(x)…$,${f_{n+1}}(x)=f_n^'(x),n∈{N^*}$,則f2015(x)=sinx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知函數(shù)f(x)=x-4+$\frac{9}{x+1}$(x>-1),當(dāng)x=a時(shí),f(x)取得最小值,則在直角坐標(biāo)系中,函數(shù)g(x)=($\frac{1}{a}$)|x+1|的大致圖象為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知x與y之間的幾組數(shù)據(jù)如表:則由表數(shù)據(jù)所得線性回歸直線必過點(diǎn)(4.5,3.5).
x3456
y2.5344.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.?dāng)?shù)列{an}中,a1=1,an+1=-$\frac{1}{1+{a}_{n}}$,則a2016=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知$\frac{x}{{1+{i}}}$=1-yi(i是虛數(shù)單位),其中x,y∈R,則x+yi的共軛復(fù)數(shù)是2-i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=3+tcos\frac{π}{4}}\\{y=1-tsin\frac{π}{4}}\end{array}\right.$(t為參數(shù)),以O(shè)為極點(diǎn),Ox正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=4cosθ.
(1)求曲線C1的直角坐標(biāo)方程;
(2)設(shè)C1與C2相交于A,B兩點(diǎn),求A,B兩點(diǎn)的極坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案