【題目】下列命題中,錯(cuò)誤的是(

A. 一條直線與兩個(gè)平行平面中的一個(gè)相交,則必與另一個(gè)平面相交

B. 平行于同一平面的兩條直線不一定平行

C. 如果平面垂直,則過(guò)內(nèi)一點(diǎn)有無(wú)數(shù)條直線與垂直.

D. 如果平面不垂直于平面,那么平面內(nèi)一定不存在直線垂直于平面

【答案】C

【解析】

試題A選項(xiàng),假設(shè)直線l與另一個(gè)平面平行,則過(guò)直線任作一個(gè)平面與兩個(gè)平行平面分別相交于直線,由直線與平面平行面面平行的性質(zhì)定理可得l,且,所以l,由此可得l,與已知矛盾,所以假設(shè)錯(cuò)誤,所以A正確;

對(duì)于B選項(xiàng),平行于同一平面的兩條直線可能異面、平行、相交,故B正確;

C選項(xiàng)是錯(cuò)誤的,兩平面垂直,過(guò)一個(gè)平面內(nèi)一點(diǎn)有且只有一條直線垂直于另外一平面;

D選項(xiàng)的逆否命題為:若平面內(nèi)存在直線垂直于平面,則平面垂直于平面,這是面面垂直的判定定理,故原命題正確,

故選C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐中,兩兩垂直,,平面平面,與棱分別交于三點(diǎn).

(1)過(guò)作直線,使得,,請(qǐng)寫出作法并加以證明;

(2)若α將三梭錐P﹣ABC分成體積之比為8:19的兩部分(其中,四面體P1A1B1C的體積更。,D為線段B1tC的中點(diǎn),求直線P1D與平面PA1B1所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】空氣質(zhì)量指數(shù)(Air Quality Index,簡(jiǎn)稱AQI)是定量描述空氣質(zhì)量狀況的質(zhì)量指數(shù).空氣質(zhì)量按照AQI大小分為六級(jí):0~50為優(yōu);51~100為良;101~150為輕度污染;151~200為中度污染;201~300為重度污染;大于300為嚴(yán)重污染.一環(huán)保人士記錄去年某地某月10天的AQI的莖葉圖如圖.利用該樣本估計(jì)該地本月空氣質(zhì)量?jī)?yōu)良()的天數(shù)(按這個(gè)月總共30天計(jì)算)為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在梯形中,,平面平面,四邊形是菱形,.

(1)求證:;

(2)求二面角的平面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)求的最小正周期;

(2)若關(guān)于的方程在區(qū)間內(nèi)有兩個(gè)不相等的實(shí)數(shù)解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某籃球運(yùn)動(dòng)員每次在罰球線投籃投進(jìn)的概率是0.8,且各次投籃的結(jié)果互不影響.

(1)假設(shè)這名運(yùn)動(dòng)員投籃3次,求恰有2次投進(jìn)的概率(結(jié)果用分?jǐn)?shù)表示);

(2)假設(shè)這名運(yùn)動(dòng)員投籃3次,每次投進(jìn)得1分,未投進(jìn)得0分;在3次投籃中,若有2次連續(xù)投進(jìn),而另外一次未投進(jìn),則額外加1分;若3次全投進(jìn),則額外加3分,記為該籃球運(yùn)動(dòng)員投籃3次后的總分?jǐn)?shù),求的分布列及數(shù)學(xué)期望(結(jié)果用分?jǐn)?shù)表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)若函數(shù)的圖象在處的切線經(jīng)過(guò)點(diǎn),求的值;

(2)是否存在負(fù)整數(shù),使函數(shù)的極大值為正值?若存在,求出所有負(fù)整數(shù)的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】連續(xù)擲3枚硬幣,觀察落地后這3枚硬幣出現(xiàn)正面還是反面.(與先后順序有關(guān))

1)寫出這個(gè)試驗(yàn)的樣本空間及樣本點(diǎn)的個(gè)數(shù);

2)寫出事件“恰有兩枚正面向上”的集合表示.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),曲線處的切線方程為.

(1)求函數(shù)的解析式;

(2)求在區(qū)間上的極值.

查看答案和解析>>

同步練習(xí)冊(cè)答案