14.如圖網格紙上小正方形的邊長為l,粗實線畫出的是某幾何體的三視圖,則這個幾何體的體積為( 。
A.1B.2C.3D.4

分析 由幾何體的三視圖,得所求幾何體是側放的四棱錐S-ABCD,其中底面ABCD是直角梯形ABCD,AB∥CD,AD⊥AB,AD⊥AS,AB=4,CD=AD=AS=2,由此能求出這個幾何體的體積.

解答 解:由幾何體的三視圖,得所求幾何體是如圖所示的側放的四棱錐S-ABCD,
其中底面ABCD是直角梯形ABCD,AB∥CD,AD⊥AB,AD⊥AS,
AB=4,CD=AD=AS=2,
∴這個幾何體的體積為:
V=$\frac{1}{3}SH=\frac{1}{3}×{S}_{梯形ABCD}×AS$
=$\frac{1}{3}×(2+4)×2×\frac{1}{2}×2$=4.
故選:D.

點評 本題考查幾何體的體積的求法,是基礎題,解題時要認真審題,注意三視圖的性質的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

7.(cos75°+sin75°)2=( 。
A.$\frac{1}{2}$B.1C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知點F1、F2分別是雙曲線C:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左,右焦點,過點F1的直線l與雙曲線C的左,右兩支分別交于P,Q兩點,若△PQF2是以∠PQF2為為直角的等腰直角三角形,e為雙曲線C的離心率,則e2=5+2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知在△ABC中,A(-1,0),B(1,0),C點在曲線$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{7}$=1(其中y≠0)上,則$\frac{sinC}{sinA+sinB}$等于( 。
A.$\frac{\sqrt{3}}{3}$B.$\frac{\sqrt{2}}{4}$C.2$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知函數(shù)y=f(x)(x∈R)d的導函數(shù)為f′(x),若f(x)-f(-x)=2x3,且當x≥0時,f′(x)>3x2,則不等式f(x)-f(x-1)>3x2-3x+1的解集是($\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知集合A={x|$\frac{2}{x-1}$<1},集合B={x|mx-1>0},若A∪B=A,則實數(shù)m的取值范圍是m≤$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.如圖,在四棱錐P-ABCD中,底面ABCD是正方形,側面PAD是邊長為2的正三角形,PD⊥CD,E,F(xiàn)分別為PC,AD的中點.
(1)求證:平面CEF⊥平面ABCD;
(2)求三棱錐P-BDE的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知函數(shù)f(x)=x|x-a|.
(1)若不等式f(1)<1,a為整數(shù),求a的值;
(2)若對一切x∈(0,1],f(x)<1,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知數(shù)列{an}滿足a1=1,an+1•an=2n(n∈N*),則S2016=(  )
A.22016-1B.3•21008-3C.3•21008-1D.3•21007-2

查看答案和解析>>

同步練習冊答案