分析 (Ⅰ)通過等差數(shù)列的性質(zhì)及已知條件可知a9=19,進(jìn)而可求出公差d,計(jì)算即得結(jié)論;
(Ⅱ)通過(I)裂項(xiàng)可知bn=$\frac{1}{4}$[$\frac{1}{{n}^{2}}$-$\frac{1}{(n+2)^{2}}$],進(jìn)而并項(xiàng)相加、放縮即得結(jié)論.
解答 (Ⅰ)解:∵數(shù)列{an}為等差數(shù)列,
∴a3+a9=a5+a7=26,
又∵a3=7,
∴a9=19,d=$\frac{{a}_{9}-{a}_{3}}{9-3}$=$\frac{19-7}{9-3}$=2,
∴an=a3+(n-3)d=7+2n-6=2n+1,
Sn=$\frac{n({a}_{1}+{a}_{n})}{2}$=$\frac{n(3+2n+1)}{2}$=n(n+2);
(Ⅱ)證明:由(I)可知bn=$\frac{n+1}{{n}^{2}(n+2)^{2}}$=$\frac{1}{4}$[$\frac{1}{{n}^{2}}$-$\frac{1}{(n+2)^{2}}$],
則Tn=$\frac{1}{4}$[1-$\frac{1}{{3}^{2}}$+$\frac{1}{{2}^{2}}$-$\frac{1}{{4}^{2}}$+…+$\frac{1}{(n-1)^{2}}$-$\frac{1}{(n+1)^{2}}$+$\frac{1}{{n}^{2}}$-$\frac{1}{(n+2)^{2}}$]
=$\frac{1}{4}$[1+$\frac{1}{{2}^{2}}$-$\frac{1}{(n+1)^{2}}$-$\frac{1}{(n+2)^{2}}$]
<$\frac{1}{4}$(1+$\frac{1}{{2}^{2}}$)
=$\frac{5}{16}$.
點(diǎn)評(píng) 本題考查數(shù)列的通項(xiàng)及前n項(xiàng)和,考查運(yùn)算求解能力,考查裂項(xiàng)相消法,注意解題方法的積累,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1(x<-2) | B. | $\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1(x>2) | C. | $\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{5}$=1(x>0) | D. | $\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1(x>0) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com