設(shè)正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn,向量
a
=(
Sn
,1),
b
=(an+1,2)(n∈N*)滿足
a
b

(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}的通項(xiàng)公式為bn=
an
an+t
(t∈N*),若b1,b2,bm(m≥3,m∈N*)成等差數(shù)列,求t和m的值;
(3)如果等比數(shù)列{cn}滿足c1=a1,公比q滿足0<q<
1
2
,且對任意正整數(shù)k,ck-(ck+1+ck+2)仍是該數(shù)列中的某一項(xiàng),求公比q的取值范圍.
考點(diǎn):數(shù)列與向量的綜合,等比數(shù)列的性質(zhì)
專題:綜合題,等差數(shù)列與等比數(shù)列
分析:(1)利用
a
b
,
a
=(
Sn
,1),
b
=(an+1,2),可得2
Sn
=an+1,即4Sn=(an+1)2,再寫一式,兩式相減,即可求數(shù)列{an}的通項(xiàng)公式;
(2)確定bn=
an
an+t
=
2n-1
2n-1+t
,利用b1,b2,bm(m≥3,m∈N*)成等差數(shù)列,建立等式,即可求t和m的值;
(3)先確定ck-(ck+1+ck+2)=qk-1(1-q-q2)是該數(shù)列中的某一項(xiàng),可得1-q-q2是q的幾次方形式,從而可求公比q的取值范圍.
解答: 解:(1)∵
a
b
,
a
=(
Sn
,1),
b
=(an+1,2),
∴2
Sn
=an+1,
∴4Sn=(an+1)2,①
n=1時,a1=1;
n≥2時,4Sn-1=(an-1+1)2,②
①-②可得(an+an-1)(an-an-1-2)=0,
∵an>0,∴an-an-1=2,
∴數(shù)列{an}是以1為首項(xiàng),2為公差的等差數(shù)列,
∴an=2n-1;
(2)bn=
an
an+t
=
2n-1
2n-1+t
,
∵b1,b2,bm(m≥3,m∈N*)成等差數(shù)列,
∴2×
3
3+t
=
1
1+t
+
2m-1
2m-1+t

∴m=3+
4
t-1
,
∵m,t都是正整數(shù),
∴t=2,3,5,m=7,5,4;
(3)cn=qn-1,
∵ck-(ck+1+ck+2)仍是該數(shù)列中的某一項(xiàng),
∴ck-(ck+1+ck+2)=qk-1(1-q-q2)是該數(shù)列中的某一項(xiàng),
∴1-q-q2是q的幾次方形式,
∴0<q<
1
2
,
1
4
<1-q-q2<1,
∴1-q-q2=q,
∴q=
2
-1.
點(diǎn)評:本題考查數(shù)列的通項(xiàng)與求和,考查學(xué)生分析解決問題的能力,確定數(shù)列的通項(xiàng)是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

2014°是第( 。┫笙藿牵
A、一B、二C、三D、四

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系下,曲線C1
x=2t+2a
y=-t
(t為參數(shù)),曲線C2
x=2cosθ
y=2+2sinθ
(θ為參數(shù)).若曲線C1,C2有公共點(diǎn),則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)f(x)=x4+5x3-27x2-101x-70的零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)、g(x)分別是定義在R上的奇函數(shù)和偶函數(shù),當(dāng)x<0時,f′(x)g(x)+f(x)g′(x)>0,且g(-1)=0,則不等式f(x)•g(x)>0的解集是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解關(guān)于x的不等式:kx2-2(k-1)x+k+2>0(k∈R).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某高校共有15000人,其中男生10500人,女生4500人,為調(diào)查該校學(xué)生每周平均體育運(yùn)動時間的情況,采用分層抽樣的方法,收集300位學(xué)生每周平均體育運(yùn)動時間的樣本數(shù)據(jù)(單位:小時)
(Ⅰ)應(yīng)收集多少位女生樣本數(shù)據(jù)?
(Ⅱ)根據(jù)這300個樣本數(shù)據(jù),得到學(xué)生每周平均體育運(yùn)動時間的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為:[0,2],(2,4],(4,6],(6,8],(8,10],(10,12].估計該校學(xué)生每周平均體育運(yùn)動時間超過4個小時的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)為定義在R上奇函數(shù),當(dāng)滿足x≤y且xy≠0時有f(x+y)=3f(x)+4f(y)+3x2-5y2+2x+3y+1,求f(x)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若不等式ax2+4x+a>1-2x2在a∈[-2,2]時恒成立,求x的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案