下列各組函數(shù)中,為相同函數(shù)的是(  )
A.
B.
C.
D.,
C
本題是一道關(guān)于函數(shù)定義的題、考查函數(shù)的三個(gè)要素
思路分析:函數(shù)的定義域、對應(yīng)法則、值域是確定一個(gè)函數(shù)的三個(gè)要素,一般確定定義域與對應(yīng)法則即可。
解:對于A答案 定義域?yàn)镽,定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823192409021353.png" style="vertical-align:middle;" />; 對于B和D選項(xiàng)定義域均為 而 定義域?yàn)镽,所以選擇C
本題考查基本概念、注意對書上概念的準(zhǔn)確理解
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在經(jīng)濟(jì)學(xué)中,函數(shù)的邊際函數(shù)定義為。某公司每月最多生產(chǎn)臺(tái)報(bào)警系統(tǒng)裝置,生產(chǎn)臺(tái)的收入函數(shù)為(單位:元),其成本函數(shù)為(單位:元),利潤是收入與成本之差。
(1)求利潤函數(shù)及邊際利潤函數(shù);
(2)利潤函數(shù)與邊際利潤函數(shù)是否具有相等的最大值
(3)你認(rèn)為本題中邊際利潤函數(shù)取最大值的實(shí)際意義是什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某公司生產(chǎn)陶瓷,根據(jù)歷年的情況可知,生產(chǎn)陶瓷每天的固定成本為14000元,每生產(chǎn)一件產(chǎn)品,成本增加210元.已知該產(chǎn)品的日銷售量與產(chǎn)量之間的關(guān)系式為
,每件產(chǎn)品的售價(jià)與產(chǎn)量之間的關(guān)系式為

(Ⅰ)寫出該陶瓷廠的日銷售利潤與產(chǎn)量之間的關(guān)系式;
(Ⅱ)若要使得日銷售利潤最大,每天該生產(chǎn)多少件產(chǎn)品,并求出最大利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若函數(shù),則      (  )
                                

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列命題中正確的個(gè)數(shù)是(  )
是同一函數(shù).
函數(shù)的圖像是一些孤立的點(diǎn).
3)空集是任何集合的真子集.
4)函數(shù)是定義在R上的函數(shù),且,則函數(shù)的圖像不可能關(guān)于軸對稱.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列各函數(shù)中為奇函數(shù)的是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列各對函數(shù)中,圖象完全相同的是
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)的圖象過點(diǎn)(1,13),且函數(shù)是偶函數(shù).
(1)求的解析式;
(2)已知,,求函數(shù)在[,2]上的最大值和最小值;
(3)函數(shù)的圖象上是否存在這樣的點(diǎn),其橫坐標(biāo)是正整數(shù),縱坐標(biāo)是一個(gè)完全平方數(shù)?如果存在,求出這樣的點(diǎn)的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)的定義域?yàn)?u>              

查看答案和解析>>

同步練習(xí)冊答案