7.已知函數(shù)f(x)=-x3+bx+a在x=1處的切線斜率為0,
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若方程f(x)=0只有一個(gè)實(shí)根,求a的取值范圍.

分析 (1)求出函數(shù)的導(dǎo)數(shù),計(jì)算f′(1),求出b的值,從而求出函數(shù)的單調(diào)區(qū)間即可;
(2)問題轉(zhuǎn)化為f(x)極大值和極小值均大于0,或者均小于0,得到關(guān)于a的不等式組,解出即可.

解答 解:(1)f'(x)=-3x2+b,又f'(1)=-3+b=0,所以b=3,
f'(x)=-3x2+3,令f'(x)=0,得x=±1,

x(-∞,-1)-1(-1,1)1(1,+∞)
f'(x)-0+0-
f(x)極小值極大值
所以,f(x)增區(qū)間是(-1,1),減區(qū)間是(-∞,-1),(1,+∞).
(2)依題意:f(x)極大值和極小值均大于0,或者均小于0,
即:$\left\{\begin{array}{l}f(-1)>0\\ f(1)>0\end{array}\right.⇒a>2$,或$\left\{\begin{array}{l}f(-1)<0\\ f(1)<0\end{array}\right.⇒a<-2$.

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、極值問題,考查導(dǎo)數(shù)的應(yīng)用,是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.α為第四象限角,則$\frac{sinα}{{|{sinα}|}}+\frac{{|{cosα}|}}{cosα}+\frac{tanα}{{|{tanα}|}}$=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.執(zhí)行如圖程序框圖,若輸入的t∈[-1,2],則輸出S屬于( 。
A.[0,1]B.$[{\frac{3}{4},\sqrt{2}}]$C.$[0,\sqrt{2})$D.$[1,\sqrt{2})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)g(x)=x•f′(x)(其中f′(x)是f(x)的導(dǎo)函數(shù)) 的圖象如圖所示,則f(x)的極小值點(diǎn)是x=0,x=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若銳角△ABC的面積為$\frac{{3\sqrt{3}}}{2}$,且AB=2,AC=3,則BC=( 。
A.2B.$\sqrt{5}$C.$\sqrt{6}$D.$\sqrt{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.計(jì)算sin(-$\frac{15π}{6}$)cos$\frac{20π}{3}$tan(-$\frac{7π}{6}$)=$\frac{\sqrt{3}}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)是定義在[-1,1]上的函數(shù),若對(duì)于任意x,y∈[-1,1],都有f(x+y)=f(x)+f(y),且x>0時(shí),有f(x)>0
(1)判斷函數(shù)的奇偶性;
(2)判斷函數(shù)f(x)在[-1,1]上是增函數(shù),還是減函數(shù),并證明你的結(jié)論;
(3)設(shè)f(1)=1,若f(x)<m2-2am+1,對(duì)所有x∈[-1,1],a∈[-1,1]恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知集合M={x||x|=1},N={x|$\frac{1}{2}$<2x<4,x∈Z},則M∩N等于(  )
A.{-1,1}B.{1}C.{0}D.{-1,0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,在四棱錐P-ABCD中,PC⊥底面ABCD,底面ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD=2,PC=2,E是PB上的點(diǎn).
(1)求證:平面EAC⊥平面PBC;
(2)若E是PB的中點(diǎn),求二面角P-AC-E的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案