分析 (1)由橢圓上的點到焦點的距離的最小值為a-c,最大值為a+c解方程可得a,c,再由a,b,c的關(guān)系,可得b,進而得到橢圓方程;
(2)利用橢圓的定義與余弦定理即可求得|PF1|•|PF2|=$\frac{256}{3}$,再利用正弦定理即可求得△F1PF2的面積.
解答 解:(1)設(shè)橢圓的焦距為2c,
由題意可得a-c=4,a+c=16,
解方程可得a=10,c=6,
b=$\sqrt{{a}^{2}-{c}^{2}}$=8,
可得橢圓的方程為$\frac{{x}^{2}}{100}$+$\frac{{y}^{2}}{64}$=1;
(2)由橢圓的定義可得|PF1|+|PF2|=2a=20,|F1F2|=2c=12,
又∠F1PF2=60°,
∴由余弦定理得:|F1F2|2=|PF1|2+|PF2|2-2|PF1|•|PF2|cos∠F1PF2,
|F1F2|2=(|PF1|+|PF2|)2-2|PF1|•|PF2|-2|PF1|•|PF2|cos∠F1PF2,
即4c2=4a2-3|PF1|•|PF2|,
∴|PF1|•|PF2|=$\frac{256}{3}$,
∴${S}_{△P{F}_{1}{F}_{2}}$=$\frac{1}{2}$|PF1|•|PF2|sin∠F1PF2=$\frac{1}{2}$×$\frac{256}{3}$×$\frac{\sqrt{3}}{2}$=$\frac{64\sqrt{3}}{3}$.
點評 本題考查橢圓的方程和簡單性質(zhì),著重考查橢圓的定義及余弦定理、面積公式的應(yīng)用,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 點(-2,3)在橢圓上 | B. | 點(3,2)在橢圓上 | C. | 點(-2,-3)在橢圓上 | D. | 點(2,-3)在橢圓上 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com