13.已知函數(shù)f(x)=$\left\{\begin{array}{l}{sinx(sinx≤cosx)}\\{cosx(cosx>sinx)}\end{array}\right.$,試畫出f(x)的圖象.

分析 f(x)的含義是去正弦和余弦的較小者,所以先在同一坐標(biāo)系內(nèi)畫出y=sinx和y=cosx的圖象,然后取下方的部分,就得到f(x)的圖象.

解答 解:f(x)的含義是去正弦和余弦的較小者,
故函數(shù)f(x)=$\left\{\begin{array}{l}sinx(sinx≤cosx)\\ cosx(cosx>sinx)\end{array}\right.$的圖象如下圖中紅色曲線所示:

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是分段函數(shù)的應(yīng)用,正弦函數(shù)的圖象和余弦函數(shù)的圖象,難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.點(diǎn)P與定點(diǎn)F(2,0)的距離和它到定直線x=$\frac{1}{2}$的距離的比是2:1,求點(diǎn)P的軌跡方程,并說明軌跡是什么圖形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.絕對(duì)值不等值|x|≥5的解集為{x|x≤-5,或x≥5 }.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.若命題ρ:$\sqrt{1-sin2x}$=sinx-cosx為真,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.下列方程是否表示橢圓,若是,指出該橢圓的焦點(diǎn)坐標(biāo).
(1)2x2+y2=1;
(2)$\frac{{x}^{2}}{2}$+$\frac{{y}^{2}}{3}$=4;
(3)2x2+3y2=6;
(4)$\frac{{x}^{2}}{2}$+$\frac{{y}^{2}}{2}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.一個(gè)正四棱臺(tái)上,下底面邊長(zhǎng)為a,b,高是h,則它的一個(gè)對(duì)角面(經(jīng)過不相鄰兩條側(cè)棱的截面)的面積是$\frac{\sqrt{2}a+\sqrt{2}b}{2}h$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.學(xué)校舉辦元旦晚會(huì),需要從每班選10名男生,8名女生參加合唱節(jié)目,某班有男生32名,女生28名,試用抽簽法確定該班參加合唱的同學(xué).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.F1、F2分別是橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn),橢圓上的點(diǎn)到F2的最近距離為4,最遠(yuǎn)距離為16.
(1)求橢圓的方程;
(2)P為該橢圓上一點(diǎn),且∠F1PF2=60°,求△F1PF2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.某校高二學(xué)生有800名,從中抽取100名學(xué)生期末考試語文成績(jī)的頻率分布直方圖如圖所示,其中成績(jī)分組區(qū)間是:[50,60),[60,70),[70,80),[80,90),[90,100]
(Ⅰ)求圖中α的值;
(Ⅱ)根據(jù)頻率分布直方圖,估計(jì)這100名學(xué)生語文成績(jī)的平均分、中位數(shù)、眾數(shù);(精確到個(gè)位數(shù))
(Ⅲ)若這100名學(xué)生語文成績(jī)某些分?jǐn)?shù)段的人數(shù)(x)與數(shù)學(xué)成績(jī)相應(yīng)分?jǐn)?shù)段的人數(shù)(y)之比如表所示,求推測(cè)高二這800名學(xué)生中數(shù)學(xué)成績(jī)?cè)赱50,90)之外的人數(shù).
分?jǐn)?shù)段[50,60)[60,70)[70,80)[80,90)
x:y1:12:13:44:5

查看答案和解析>>

同步練習(xí)冊(cè)答案