已知y=f(x)是定義在R上的函數(shù),對任意x1<x2都有f(x1)>f(x2),則方程f(x)=0的根的情況是


  1. A.
    至多有一個
  2. B.
    可能有兩個
  3. C.
    有且只有一個
  4. D.
    有兩個以上
A
分析:由題設(shè)條件可以判斷出函數(shù)y=f(x)是定義在R上的減函數(shù),從圖象上看此類函數(shù)的圖象至多與x軸有一個交點,本題證明可用圖象法.
解答:由題設(shè)y=f(x)是定義在R上的函數(shù),對任意x1<x2都有f(x1)>f(x2),
依據(jù)函數(shù)單調(diào)性的定義可知函數(shù)在R上是一個減函數(shù)
函數(shù)的圖象可能有如下兩種情況,如圖兩個函數(shù)的圖象.
從圖上看出,函數(shù)與x軸至多有一個交點,
故應(yīng)選A.
點評:本題考查具有單調(diào)性的函數(shù)的特征,本題用圖象的直觀幫助解決圖象與坐標(biāo)軸交點的個數(shù)問題,直觀形象,利于理解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=x+
a
x
的定義域為(0,+∞),且f(2)=2+
2
2
.設(shè)點P是函數(shù)圖象上的任意一點,過點P分別作直線y=x和y軸的垂線,垂足分別為M、N.
(1)求a的值.
(2)問:|PM|•|PN|是否為定值?若是,則求出該定值;若不是,請說明理由.
(3)設(shè)O為坐標(biāo)原點,求四邊形OMPN面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2x+
5x
的定義域為(0,+∞).設(shè)點P是函數(shù)圖象上的任意一點,過點P分別作直線y=2x和y軸的垂線,垂足分別為M、N.
(1)|PM|•|PN|是否為定值?若是,求出該定值;若不是,說明理由;
(2)設(shè)點O為坐標(biāo)原點,求四邊形OMPN面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x+
ax
的定義域為(0,+∞),a>0且當(dāng)x=1時取得最小值,設(shè)點P是函數(shù)圖象上的任意一點,過點P分別作直線y=x和y軸的垂線,垂足分別為M、N.
(1)求a的值;
(2)問:PM•PN是否為定值?若是,則求出該定值,若不是,請說明理由;
(3)設(shè)O為坐標(biāo)原點,求四邊形OMPN面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(2x-
π
6
),g(x)=sin(2x+
π
3
),直線y=m與兩個相鄰函數(shù)的交點為A,B,若m變化時,AB的長度是一個定值,則AB的值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3-ax+b存在極值點.
(1)求a的取值范圍;
(2)過曲線y=f(x)外的點P(1,0)作曲線y=f(x)的切線,所作切線恰有兩條,切點分別為A、B.
(。┳C明:a=b;
(ⅱ)請問△PAB的面積是否為定值?若是,求此定值;若不是求出面積的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案