1.已知隨機(jī)變量ξ~B(36,p),且E(ξ)=12,則D(4ξ+3)=128.

分析 根據(jù)題意求出p、D(ξ)的值,再根據(jù)公式計(jì)算D(4ξ+3)的值.

解答 解:隨機(jī)變量ξ~B(36,p),且E(ξ)=12,
∴n=36,
np=36p=12,
解得p=$\frac{1}{3}$,
∴D(ξ)=np(1-p)=36×$\frac{1}{3}$×(1-$\frac{1}{3}$)=8,
∴D(4ξ+3)=42×8=128.
故答案為:128.

點(diǎn)評(píng) 本題考查了離散型隨機(jī)變量的期望與方差的計(jì)算問(wèn)題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=ax-lnx-a(a∈R).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若a∈(0,+∞),x∈(1,+∞),證明:f(x)<axlnx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=ex-ax+b.
(1)若f(x)在x=2有極小值1-e2,求實(shí)數(shù)a,b的值.
(2)若f(x)在定義域R內(nèi)單調(diào)遞增,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足:|$\overrightarrow{a}$|=|$\overrightarrow$|=1,且$\overrightarrow{a}$$•\overrightarrow$=-$\frac{1}{2}$
(1)求$\overrightarrow{a}$與$\overrightarrow$的夾角θ
(2)求|$\overrightarrow{a}$$-2\overrightarrow$|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.若方程ax2+bx+1=0的兩個(gè)根分別為$\frac{1}{2}$和1,則不等式x2+bx+a<0的解集為(1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知復(fù)數(shù)$z=-\frac{1}{2}+\frac{{\sqrt{3}}}{2}i$,則復(fù)數(shù)$\overline z+|z|$在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.要得到函數(shù)y=3sin(2x+$\frac{π}{5}$)圖象,只需把函數(shù)y=3sin2x圖象( 。
A.向左平移$\frac{π}{5}$個(gè)單位B.向右平移$\frac{π}{5}$個(gè)單位
C.向左平移$\frac{π}{10}$個(gè)單位D.向右平移$\frac{π}{10}$個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.設(shè)復(fù)數(shù)z=$\frac{1+i}{1-i}$,則$\overline{z}$的實(shí)部是0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.某城市在發(fā)展過(guò)程中,交通狀況逐漸受到有關(guān)部門(mén)的關(guān)注,據(jù)有關(guān)統(tǒng)計(jì)數(shù)據(jù)顯示,從上午6點(diǎn)到中午12點(diǎn),車輛通過(guò)該市某一路段的用時(shí)y(分鐘)與車輛進(jìn)入該路段的時(shí)刻t之間的關(guān)系可近似地用如下函數(shù)給出:
y=$\left\{\begin{array}{l}{-\frac{1}{8}{t}^{3}-\frac{3}{4}{t}^{2}+36t-\frac{629}{4},6≤t≤9}\\{\frac{1}{8}t+\frac{59}{4},9≤t≤10}\\{-3{t}^{2}+66t-345,10<t≤12}\end{array}\right.$
求從上午6點(diǎn)到中午12點(diǎn),通過(guò)該路段用時(shí)最多的時(shí)刻.

查看答案和解析>>

同步練習(xí)冊(cè)答案