13.要得到函數(shù)y=3sin(2x+$\frac{π}{5}$)圖象,只需把函數(shù)y=3sin2x圖象( 。
A.向左平移$\frac{π}{5}$個單位B.向右平移$\frac{π}{5}$個單位
C.向左平移$\frac{π}{10}$個單位D.向右平移$\frac{π}{10}$個單位

分析 由題意利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,得出結(jié)論.

解答 解:把函數(shù)y=3sin2x圖象向左平移$\frac{π}{10}$個單位,可得y=3sin2(x+$\frac{π}{10}$)=3sin(2x+$\frac{π}{5}$)的圖象,
故選:C.

點評 本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.解下列各式中的n值.
(1)90${A}_{n}^{2}$=${A}_{n}^{4}$;(2)${A}_{n}^{4}$•${A}_{n-4}^{n-4}$=42${A}_{n-2}^{n-2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.設(shè)一組數(shù)據(jù)51,54,m,57,53的平均數(shù)是54,則這組數(shù)據(jù)的標準差等于2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知隨機變量ξ~B(36,p),且E(ξ)=12,則D(4ξ+3)=128.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)f(x)=2sin(ωx+φ)(ω>0,-π<φ<0)在區(qū)間$[{\frac{π}{6},\frac{π}{2}}]$上單調(diào)遞增,且函數(shù)值從-2增大到0.若${x_1}_{\;}、{x_2}∈[{-\frac{π}{6},\frac{π}{2}}]$,且f(x1)=f(x2),則f(x1+x2)=(  )
A.$-\sqrt{2}$B.$\sqrt{2}$C.$-\sqrt{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知數(shù)列{an} 的前n項和為Sn,且Sn=$\sqrt{n+1}$-1,n∈N*.算出數(shù)列的前4項的值后,猜想該數(shù)列的通項公式是$\sqrt{n+1}$-$\sqrt{n}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.給出下列四個命題:
①f(x)=sin(2x-$\frac{π}{4}$)的對稱軸為x=$\frac{kπ}{2}$+$\frac{3π}{8}$,k∈Z;
②函數(shù)f(x)=sinx+$\sqrt{3}$cosx的最大值為2;
③函數(shù)f(x)=sinxcosx-1的周期為2π;
④函數(shù)f(x)=sin(x+$\frac{π}{4}$)在[-$\frac{π}{2}$,$\frac{π}{2}$]上是增函數(shù).
其中正確命題的個數(shù)是B
A.1個B.2個C.3個D.4個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若直線l與直線3x+y+8=0垂直,則直線l的斜率為(  )
A.-3B.-$\frac{1}{3}$C.3D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.設(shè)數(shù)列{an}的前n項和為Sn,滿足Sn=2an-2,則$\frac{a_8}{a_6}$=4.

查看答案和解析>>

同步練習(xí)冊答案