【題目】如圖,一塊黃銅板上插著三根寶石針,在其中一根針上從下到上穿好由大到小的若干金片.若按照下面的法則移動(dòng)這些金片:每次只能移動(dòng)一片金片;每次移動(dòng)的金片必須套在某根針上;大片不能疊在小片上面.設(shè)移完片金片總共需要的次數(shù)為,可推得.求移動(dòng)次數(shù)的程序框圖模型如圖所示,則輸出的結(jié)果是( )

A. 1022 B. 1023 C. 1024 D. 1025

【答案】B

【解析】

根據(jù)移動(dòng)方法與規(guī)律發(fā)現(xiàn),隨著盤子數(shù)目的增多,都是分兩個(gè)階段移動(dòng),用盤子數(shù)目減1的移動(dòng)次數(shù)都移動(dòng)到柱,然后把最大的盤子移動(dòng)到柱,再用同樣的次數(shù)從柱移動(dòng)到從而完成,然后根據(jù)移動(dòng)次數(shù)的數(shù)據(jù)找出總的規(guī)律求解即可.

個(gè)金屬片從號(hào)針移動(dòng)到號(hào)針最少需要;

則據(jù)算法思想有:

;

第一次循環(huán),

第二次循環(huán),;

第三次循環(huán), ,

…,

第九次循環(huán),輸出故選B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是圓O的直徑,C是圓O上不同于A,B的一點(diǎn),PA⊥平面ABC,E是PC的中點(diǎn),,PA=AC=1.

(1)求證:AE⊥PB;

(2)求三棱錐C-ABE的體積.

(3)求二面角A-PB-C的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校研究性學(xué)習(xí)小組從汽車市場(chǎng)上隨機(jī)抽取輛純電動(dòng)汽車調(diào)查其續(xù)駛里程(單次充電后能行駛的最大里程),被調(diào)查汽車的續(xù)駛里程全部介于公里和公里之間將統(tǒng)計(jì)結(jié)果分成,,,,,繪制成如圖所示的頻率分布直方圖.

(1)求直方圖中的值;

(2)求續(xù)駛里程在的車輛數(shù);

(3)若從續(xù)駛里程在的車輛中隨機(jī)抽取輛車,求其中恰有一輛車的續(xù)駛里程在內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】的內(nèi)角的對(duì)邊分別為,下列四個(gè)命題中正確的是(

A.,則一定是銳角三角形

B.,則一定是等邊三角形

C.,則一定是等腰三角形

D.,則一定是等腰三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè),…,是1,2,…,的一個(gè)排列,把排在的左邊且比小的數(shù)的個(gè)數(shù)稱為的順序數(shù),如在排列6,4,5,3,2,1中,5的順序數(shù)為1,3的順序數(shù)為0,則在1至8這8個(gè)數(shù)的排列中,8的順序數(shù)為2,7的順序數(shù)為3,5的順序數(shù)為3的不同排列的種數(shù)為

A. 96B. 144C. 192D. 240

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知y=fx)是定義在(-,+∞)上的奇函數(shù),且在[0+∞)上為增函數(shù),

1)求證:函數(shù)在(-0)上也是增函數(shù);

2)如果f=1,解不等式-1f2x+1≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】小李在做一份調(diào)查問(wèn)卷,共有4道題,其中有兩種題型,一種是選擇題,共2道,另一種是填空題,共2道.

(1)小李從中任選2道題解答,每一次選1題(不放回),求所選的題不是同一種題型的概率;

(2)小李從中任選2道題解答,每一次選1題(有放回),求所選的題不是同一種題型的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】海洋藍(lán)洞是地球罕見(jiàn)的自然地理現(xiàn)象,被喻為“地球留給人類保留宇宙秘密的最后遺產(chǎn)”,我國(guó)擁有世界上最深的海洋藍(lán)洞,若要測(cè)量如圖所示的藍(lán)洞的口徑,兩點(diǎn)間的距離,現(xiàn)在珊瑚群島上取兩點(diǎn),,測(cè)得,,,,則,兩點(diǎn)的距離為___

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙、丙3位大學(xué)生同時(shí)應(yīng)聘某個(gè)用人單位的職位,甲、乙兩人只有一人被選中的概率為,兩人都被選中的概率為,丙被選中的概率為,且三人各自能否被選中互不影響.

1)求3人同時(shí)被選中的概率;

2)求恰好有2人被選中的概率;

3)求3人中至少有1人被選中的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案