【題目】設(shè),,…,是1,2,…,的一個(gè)排列,把排在的左邊且比小的數(shù)的個(gè)數(shù)稱為的順序數(shù),如在排列6,4,5,3,2,1中,5的順序數(shù)為1,3的順序數(shù)為0,則在1至8這8個(gè)數(shù)的排列中,8的順序數(shù)為2,7的順序數(shù)為3,5的順序數(shù)為3的不同排列的種數(shù)為

A. 96B. 144C. 192D. 240

【答案】B

【解析】

由題意知8的順序數(shù)為2,則8必是排第三位,7的順序數(shù)為3,則7必是第5位,那么還得考慮5和6,分為兩種,利用分類計(jì)數(shù)原理,即可求解.

由題意知8的順序數(shù)為2,則8必是排第三位,7的順序數(shù)為3,則7必是第5位,那么還得考慮5和6,

分為兩種,(1)當(dāng)5在6的前面,那么5只能排在第6位,6可以是第7或第8位,其它四個(gè)任排,有種;

(2)當(dāng)6在5前面,5在第7位,有種.

所以滿足題意的排列總數(shù)為種.

故選B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】1)若函數(shù)f(x)ax2bx3ab是偶函數(shù),定義域?yàn)?/span>[a1,2a],則a________,b________;

2)已知函數(shù)f(x)ax22x是奇函數(shù),則實(shí)數(shù)a________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某個(gè)體經(jīng)營(yíng)者把開始六個(gè)月試銷A、B兩種商品的逐月投資與所獲純利潤(rùn)列成下表:

投資A商品金額(萬元)

1

2

3

4

5

6

獲純利潤(rùn)(萬元)

0.65

1.39

1.85

2

1.84

1.40

投資B商品金額(萬元)

1

2

3

4

5

6

獲純利潤(rùn)(萬元)

0.25

0.49

0.76

1

1.26

1.51

該經(jīng)營(yíng)者準(zhǔn)備下月投入12萬元經(jīng)營(yíng)這兩種產(chǎn)品,但不知投入A、B兩種商品各多少才最合算請(qǐng)你幫助制定一下資金投入方案,使得該經(jīng)營(yíng)者能獲得最大利潤(rùn),并按你的方案求出該經(jīng)營(yíng)者下月可獲得的最大利潤(rùn)(結(jié)果保留兩個(gè)有效數(shù)字)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形中,,,的中點(diǎn),將沿向上折起,使平面平面

(Ⅰ)求證:;

(Ⅱ)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列隨機(jī)事件:

①某射手射擊一次,可能命中環(huán),環(huán),環(huán),,環(huán);

②一個(gè)小組有男生人,女生人,從中任選人進(jìn)行活動(dòng)匯報(bào);

③一只使用中的燈泡壽命長(zhǎng)短;

④拋出一枚質(zhì)地均勻的硬幣,觀察其出現(xiàn)正面或反面的情況;

⑤中秋節(jié)前夕,某市有關(guān)部門調(diào)查轄區(qū)內(nèi)某品牌的月餅質(zhì)量,給該品牌月餅評(píng)“優(yōu)”或“差”.

這些事件中,屬于古典概型的是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,一塊黃銅板上插著三根寶石針,在其中一根針上從下到上穿好由大到小的若干金片.若按照下面的法則移動(dòng)這些金片:每次只能移動(dòng)一片金片;每次移動(dòng)的金片必須套在某根針上;大片不能疊在小片上面.設(shè)移完片金片總共需要的次數(shù)為,可推得.求移動(dòng)次數(shù)的程序框圖模型如圖所示,則輸出的結(jié)果是( )

A. 1022 B. 1023 C. 1024 D. 1025

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在古代,直角三角形中較短的直角邊稱為“勾”,較長(zhǎng)的直角邊稱為“股”,斜邊稱為“弦”.三國(guó)時(shí)期吳國(guó)數(shù)學(xué)家趙爽用“弦圖”( 如圖) 證明了勾股定理,證明方法敘述為:“按弦圖,又可以勾股相乘為朱實(shí)二,倍之為朱實(shí)四,以勾股之差自相乘為中黃實(shí),加差實(shí),亦成弦實(shí).”這里的“實(shí)”可以理解為面積.這個(gè)證明過程體現(xiàn)的是這樣一個(gè)等量關(guān)系:“兩條直角邊的乘積是兩個(gè)全等直角三角形的面積的和(朱實(shí)二 ),4個(gè)全等的直角三角形的面積的和(朱實(shí)四) 加上中間小正方形的面積(黃實(shí)) 等于大正方形的面積(弦實(shí))”. 若弦圖中“弦實(shí)”為16,“朱實(shí)一”為,現(xiàn)隨機(jī)向弦圖內(nèi)投入一粒黃豆(大小忽略不計(jì)),則其落入小正方形內(nèi)的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)甲、乙、丙三個(gè)乒乓球協(xié)會(huì)分別選派3,1,2名運(yùn)動(dòng)員參加某次比賽,甲協(xié)會(huì)運(yùn)動(dòng)員編號(hào)分別為,,乙協(xié)會(huì)編號(hào)為,丙協(xié)會(huì)編號(hào)分別為,,若從這6名運(yùn)動(dòng)員中隨機(jī)抽取2名參加雙打比賽.

(1)用所給編號(hào)列出所有可能抽取的結(jié)果;

(2)求丙協(xié)會(huì)至少有一名運(yùn)動(dòng)員參加雙打比賽的概率;

(3)求參加雙打比賽的兩名運(yùn)動(dòng)員來自同一協(xié)會(huì)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐,底面為菱形, 上的點(diǎn),過的平面分別交于點(diǎn),且平面

(1)證明: ;

(2)當(dāng)的中點(diǎn), , 與平面所成的角為,求平面AMHN與平面ABCD所成銳二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案