已知集合A={a,a+d,a+2d},B={a,aq,aq2},其中a,d,q∈R,若A=B,求q的值.
考點:集合的相等
專題:集合
分析:由元素的互異性可知:d≠0,q≠±1,a≠0,而A=B可得
a+d=aq
a+2d=aq2
①或
a+d=aq2
a+2d=aq
②.解出方程組即可.
解答: 解:由元素的互異性可知:d≠0,q≠±1,a≠0,而A=B.
a+d=aq
a+2d=aq2
①或
a+d=aq2
a+2d=aq
②.
由方程組①解得q=1,應(yīng)舍去;
由方程組②解得q=1(應(yīng)舍去)或-
1
2

綜上可知:q=-
1
2
點評:本題考查了集合元素的互異性、集合相等,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(n),滿足f(1)=8,且f(n+1)=f(n)+7,n∈N+.則f(3)=(  )
A、7B、15C、22D、28

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量|
a
|=2,|
b
|=1,(2
a
-3
b
)•(2
a
+
b
)=9.
(Ⅰ)求向量
a
與向量
b
的夾角θ;
(Ⅱ)求向量
a
a
+
b
方向上的投影.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點M(1,A),N(4,-A)是函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,-
π
2
<φ<
π
2
)一個周期內(nèi)圖象上的兩點,函數(shù)f(x)的圖象與y軸交于點P,滿足
PM
PN
=1

(Ⅰ)求f(x)的表達式;
(Ⅱ)求函數(shù)y=f(x)-
3
在區(qū)間[0,6]內(nèi)的零點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:x2+y2+4x-6y+8=0,直線l過定點M(-1,2).
(Ⅰ)若直線l與圓C交于不同的兩點AB,且|AB|=3
2
,求直線l的方程;
(Ⅱ)求直線l被圓C所截弦長最短時直線l的方程以及最短長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2sinxcosx-2cos2x(x∈R).
(Ⅰ)將函數(shù)f(x)的圖象向右平移
π
6
個單位長度后得到g(x),求函數(shù)g(x)的對稱軸方程;
(Ⅱ)當(dāng)x∈[0,
π
2
]時,求函數(shù)f(x)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sin2x+cos2x=1,函數(shù)y=cos2x+2sinx+3且x∈[
π
6
,
3
]
,求函數(shù)值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某單位有職工960人,其中青年職工420人,中年職工300人,老年職工240人,為了了解該單位職工的健康情況,用分層抽樣的方法從中抽取樣本,若樣本中的青年職工為14人,則樣本容量為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)M={(x,y)|F(x,y)=0}為平面直角坐標(biāo)系xOy內(nèi)的點集,若對于任意(x1,y1)∈M,存在(x2,y2)∈M,使得x1x2+y1y2<0,則稱點集M滿足性質(zhì)P.給出下列三個點集:
①R={(x,y)|cosx-y=0};
②S={(x,y)|lnx-y=0|;
③T={(x,y)|x2-y2=1}.
其中所有滿足性質(zhì)P的點集的序號是
 

查看答案和解析>>

同步練習(xí)冊答案