已知數(shù)列{}滿足。
(1)求證:數(shù)列{}是等比數(shù)列。
(2)求的表達(dá)式。
(1)可通過(guò)公式變形算出公比,即可得證; (2)=2n-1
解析試題分析: (1)設(shè)數(shù)列{an+1}的公比為2,根據(jù)首項(xiàng)為a1+1等于2,寫出數(shù)列{an+1}的通項(xiàng)公式,變形后即可得到{an}的通項(xiàng)公式(1)由an+1=2an+1得an+1+1=2(an+1),又an+1≠0,∴,即{an+1}為等比數(shù)列;
(2)由(1)知an+1=(a1+1)qn-1,即an=(a1+1)qn-1-1=2•2n-1-1=2n-1.
考點(diǎn):等比數(shù)列
點(diǎn)評(píng):本試題考查了等比數(shù)列的定義以及通項(xiàng)公式的求解。屬于基礎(chǔ)題。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
給定數(shù)列.對(duì),該數(shù)列前項(xiàng)的最大值記為,后項(xiàng)的最小值記為,.
(Ⅰ)設(shè)數(shù)列為,,,,寫出,,的值;
(Ⅱ)設(shè)是公比大于的等比數(shù)列,且.證明:是等比數(shù)列.
(Ⅲ)設(shè)是公差大于的等差數(shù)列,且,證明:是等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在數(shù)列中,,且對(duì)任意的都有.
(1)求證:是等比數(shù)列;
(2)若對(duì)任意的都有,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列{}中
(I)設(shè),求證數(shù)列{}是等比數(shù)列;
(Ⅱ)求數(shù)列{}的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
等比數(shù)列{}的前n 項(xiàng)和為,已知,,成等差數(shù)列
(1)求{}的公比;
(2)若-=3,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
等比數(shù)列{}的前n項(xiàng)和為, 已知對(duì)任意的 ,點(diǎn),均在函數(shù)且均為常數(shù))的圖像上.
(1)求r的值;
(2)當(dāng)b=2時(shí),記 求數(shù)列的前項(xiàng)和
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知
(1)求數(shù)列{}的通項(xiàng)公式
(2)數(shù)列{}的首項(xiàng)b1=1,前n項(xiàng)和為Tn,且,求數(shù)列{}
的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分14分)
在等比數(shù)列
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{an}的前5項(xiàng)的和;
(3)若,求Tn的最大值及此時(shí)n的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分14分)
在數(shù)和之間插入個(gè)實(shí)數(shù),使得這個(gè)數(shù)構(gòu)成遞增的等比數(shù)列,將這個(gè)數(shù)的乘積記為,令,N.
(1)求數(shù)列的前項(xiàng)和;
(2)求.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com