10.已知α為第二象限角,且$\frac{1-tanα}{1+tanα}$=$\frac{4}{3}$,則tan($\frac{α}{2}$+$\frac{π}{8}$)=-3,sin(α+$\frac{π}{12}$)=$\frac{4-3\sqrt{3}}{10}$.

分析 由條件利用同角三角函數(shù)的基本關(guān)系,求得sinα和cosα的值,再利用兩角和差的三角公式求得sin(α+$\frac{π}{4}$)和cos(α+$\frac{π}{4}$)的值,利用半徑公式求得 tan($\frac{α}{2}$+$\frac{π}{8}$)的值.再求的sin$\frac{π}{12}$ 和cos$\frac{π}{12}$的值,可得sin(α+$\frac{π}{12}$)的值.

解答 解:∵a為第二象限角,且$\frac{1-tanα}{1+tanα}$=$\frac{4}{3}$,∴tanα=-$\frac{1}{7}$=$\frac{sinα}{cosα}$,
又 sin2α+cos2α=1,∴sinα=$\frac{\sqrt{2}}{10}$,cosα=-$\frac{7\sqrt{2}}{10}$,
∴sin(α+$\frac{π}{4}$)=sinαcos$\frac{π}{4}$+cosαsin$\frac{π}{4}$=-$\frac{3}{5}$,
cos(α+$\frac{π}{4}$)=cosαcos$\frac{π}{4}$-sinαsin$\frac{π}{4}$=-$\frac{4}{5}$.
∴tan($\frac{α}{2}$+$\frac{π}{8}$)=$\frac{1-cos(α+\frac{π}{4})}{sin(α+\frac{π}{4})}$=$\frac{1+\frac{4}{5}}{-\frac{3}{5}}$=-3.
∵sin$\frac{π}{12}$=$\sqrt{\frac{1-cos\frac{π}{6}}{2}}$=$\frac{\sqrt{2-\sqrt{3}}}{2}$=$\frac{\sqrt{6}-\sqrt{2}}{4}$,cos$\frac{π}{12}$=$\sqrt{\frac{1+cos\frac{π}{6}}{2}}$=$\frac{\sqrt{2+\sqrt{3}}}{2}$=$\frac{\sqrt{6}+\sqrt{2}}{4}$,
sin(α+$\frac{π}{12}$)=sinαcos$\frac{π}{12}$+cosαsin$\frac{π}{12}$=$\frac{\sqrt{2}}{10}$•$\frac{\sqrt{6}+\sqrt{2}}{4}$-$\frac{7\sqrt{2}}{10}$•$\frac{\sqrt{6}-\sqrt{2}}{4}$=$\frac{4-3\sqrt{3}}{10}$.
故答案為:-3;$\frac{4-3\sqrt{3}}{10}$.

點評 本題主要考查兩角和差的三角公式,同角三角函數(shù)的基本關(guān)系,半角公式的應(yīng)用,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,△BCD與△ECD都是邊長為2的正三角形,平面ECD⊥平面BCD,AB⊥平面BCD,AB=2$\sqrt{3}$.
(Ⅰ)求證:CD⊥平面ABE;
(Ⅱ)求點A到平面EBC的距離;
(Ⅲ)求平面ACE與平面BCD所成二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知集合A={x|x2-x≤0},B={-1,0,1},則A∩B={0,1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,在三棱柱ABC-A1B1C1中,AB=3,AA1=AC=4,AA1⊥平面ABC; AB⊥AC,
(1)求二面角A1-BC1-B1的余弦值;
(2)在線段BC1存在點D,使得AD⊥A1B,求$\frac{BD}{B{C}_{1}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.對于任意實數(shù)x,記[x]表示不超過x的最大整數(shù),{x}=x-[x],[x]表示不小于x的最小整數(shù),若x1,x2,…,xm(0≤x1<x2<…<xm≤6)是區(qū)間[0,6]中滿足方程[x]•{x}•[x]=1的一切實數(shù),則x1+x2+…+xm的值是$\frac{95}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知函數(shù)f(x)=-$\frac{1}{a}$+$\frac{2}{x}$,若f(x)+2x≥0在(0,+∞)上恒成立,則a的取值范圍是a<0或a≥$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知:橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率e=$\frac{1}{2}$,短半軸長為$\sqrt{3}$;斜率為$\frac{a}$的動直線l與橢圓C交于A,B兩點,與x軸,y軸相交于P,Q兩點(如圖所示).
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)試探究$\frac{|AP|}{|BQ|}$是否為定值?若是定值,試求出該定值;若不是定值,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知數(shù)列{an}滿足:a1=1,an+1•an-2an+1=0(n∈N*).
(Ⅰ)猜測數(shù)列{an}的通項公式,并用數(shù)學(xué)歸納法證明你的結(jié)論;
(Ⅱ)設(shè)n,k為任意兩個正整數(shù),用反證法證明:$\frac{1+{a}_{n}}{{a}_{k}}$與$\frac{1+{a}_{k}}{{a}_{n}}$中至少有一個小于2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知某幾何體的三視圖如圖所示,則該幾何體的外接球的表面積為( 。
A.πB.C.D.

查看答案和解析>>

同步練習冊答案