分析 根據(jù)題意,得出$\overrightarrow{AD}$⊥$\overrightarrow{BC}$,且AD平分∠BAC;又|$\overrightarrow{AB}$+$\overrightarrow{AC}$|=3,A∈[$\frac{π}{3}$,$\frac{5π}{6}$],
再利用數(shù)量積的定義與基本不等式求出$\overrightarrow{AB}$•$\overrightarrow{AC}$的最大值.
解答 解:△ABC中,($\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|}$+$\frac{\overrightarrow{AC}}{|\overrightarrow{AC}|}$)•($\overrightarrow{AC}$+$\overrightarrow{BA}$)=0,
∴($\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|}$+$\frac{\overrightarrow{AC}}{|\overrightarrow{AC}|}$)•$\overrightarrow{BC}$=0,
∴$\overrightarrow{AD}$⊥$\overrightarrow{BC}$,且AD平分∠BAC;
又|$\overrightarrow{AB}$+$\overrightarrow{AC}$|=3,
∴|$\overrightarrow{AD}$|=$\frac{3}{2}$,如圖所示;
又A∈[$\frac{π}{3}$,$\frac{5π}{6}$],
$\overrightarrow{AB}$•$\overrightarrow{AC}$的最大值是|$\overrightarrow{AB}$|•|$\overrightarrow{AC}$|cos$\frac{π}{3}$=$\frac{1}{2}$|$\overrightarrow{AB}$||$\overrightarrow{AC}$|≤$\frac{1}{2}$×$\frac{1}{4}$${(\overrightarrow{AB}+\overrightarrow{AC})}^{2}$=$\frac{9}{8}$.
故答案為:$\frac{9}{8}$.
點評 本題考查了平面向量的應(yīng)用問題,也考查了數(shù)量積與基本不等式的應(yīng)用問題,是綜合性題目.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)=cos$\frac{πx}{3}$ | B. | $f(x)=sin\frac{πx}{3}$ | C. | f(x)=2cos2$\frac{πx}{6}$ | D. | f(x)=2cos2$\frac{πx}{12}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com