【題目】已知函數(shù)的圖象關(guān)于直線對(duì)稱,則正確的選項(xiàng)是( )
①.函數(shù)為奇函數(shù)
②.函數(shù)在上單調(diào)遞增
③.若,則的最小值為
④.函數(shù)的圖象向右平移個(gè)單位長度得到函數(shù)的圖象
A.①③B.①④C.①②③D.②③④
【答案】A
【解析】
根據(jù)關(guān)于直線對(duì)稱及,解得,所以,對(duì)于①:,即可判斷①正誤;對(duì)于②:,所以,即可判斷②正誤;對(duì)于③:因?yàn)?/span>,,結(jié)合題意,以及的周期,可得的最小值為半個(gè)周期,即可判斷③正誤;對(duì)于④,可得平移后的,即可判斷④正誤.
由題意關(guān)于對(duì)稱,所以,
又,所以,所以
對(duì)于①:,為奇函數(shù),故①正確;
對(duì)于②:,所以,所以函數(shù)在上不單調(diào),故②錯(cuò)誤;
對(duì)于③:因?yàn)?/span>,,結(jié)合題意,所以的最小值為半個(gè)周期,又,,所以的最小值為,故③正確;
對(duì)于④:的圖像向右平移個(gè)單位長度得到函數(shù),故④錯(cuò)誤.
故選:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)=lnx+ax2+(2a+1)x.
(1)討論的單調(diào)性;
(2)當(dāng)a﹤0時(shí),證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校位同學(xué)的數(shù)學(xué)與英語成績?nèi)缦卤硭荆?/span>
學(xué)號(hào) | ||||||||||
數(shù)學(xué)成績 | ||||||||||
英語成績 | ||||||||||
學(xué)號(hào) | ||||||||||
數(shù)學(xué)成績 | ||||||||||
英語成績 |
將這位同學(xué)的兩科成績繪制成散點(diǎn)圖如下:
(1)根據(jù)該校以往的經(jīng)驗(yàn),數(shù)學(xué)成績與英語成績線性相關(guān).已知這名學(xué)生的數(shù)學(xué)平均成績?yōu)?/span>,英語平均成績?yōu)?/span>.考試結(jié)束后學(xué)校經(jīng)過調(diào)查發(fā)現(xiàn)學(xué)號(hào)為的同學(xué)與學(xué)號(hào)為的同學(xué)(分別對(duì)應(yīng)散點(diǎn)圖中的、)在英語考試中作弊,故將兩位同學(xué)的兩科成績?nèi)∠,取消兩位作弊同學(xué)的兩科成績后,求其余同學(xué)的數(shù)學(xué)成績與英語成績的平均數(shù);
(2)取消兩位作弊同學(xué)的兩科成績后,求數(shù)學(xué)成績與英語成績的線性回歸方程,并據(jù)此估計(jì)本次英語考試學(xué)號(hào)為的同學(xué)如果沒有作弊的英語成績(結(jié)果保留整數(shù)).
附:位同學(xué)的兩科成績的參考數(shù)據(jù):,.
參考公式:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的中心為O,四邊形OBEF為矩形,平面OBEF⊥平面ABCD,點(diǎn)G為AB的中點(diǎn),AB=BE=2.
(Ⅰ)求證:EG∥平面ADF;
(Ⅱ)求二面角OEFC的正弦值;
(Ⅲ)設(shè)H為線段AF上的點(diǎn),且AH=HF,求直線BH和平面CEF所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市環(huán)保部門對(duì)該市市民進(jìn)行了一次垃圾分類知識(shí)的網(wǎng)絡(luò)問卷調(diào)查,每位市民僅有一次參加機(jī)會(huì),通過隨機(jī)抽樣,得到參與問卷調(diào)查的100人的得分(滿分:100分)數(shù)據(jù),統(tǒng)計(jì)結(jié)果如表所示:
組別 | ||||||
男 | 2 | 3 | 5 | 15 | 18 | 12 |
女 | 0 | 5 | 10 | 10 | 7 | 13 |
(1)若規(guī)定問卷得分不低于70分的市民稱為“環(huán)保關(guān)注者”,請完成答題卡中的列聯(lián)表,并判斷能否在犯錯(cuò)誤概率不超過0.05的前提下,認(rèn)為是否為“環(huán)保關(guān)注者”與性別有關(guān)?
(2)若問卷得分不低于80分的人稱為“環(huán)保達(dá)人”.視頻率為概率.
①在我市所有“環(huán)保達(dá)人”中,隨機(jī)抽取3人,求抽取的3人中,既有男“環(huán)保達(dá)人”又有女“環(huán)保達(dá)人”的概率;
②為了鼓勵(lì)市民關(guān)注環(huán)保,針對(duì)此次的調(diào)查制定了如下獎(jiǎng)勵(lì)方案:“環(huán)保達(dá)人”獲得兩次抽獎(jiǎng)活動(dòng);其他參與的市民獲得一次抽獎(jiǎng)活動(dòng).每次抽獎(jiǎng)獲得紅包的金額和對(duì)應(yīng)的概率.如下表:
紅包金額(單位:元) | 10 | 20 |
概率 |
現(xiàn)某市民要參加此次問卷調(diào)查,記(單位:元)為該市民參加間卷調(diào)查獲得的紅包金額,求的分布列及數(shù)學(xué)期望.
附表及公式:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某網(wǎng)店經(jīng)營的一種商品進(jìn)行進(jìn)價(jià)是每件10元,根據(jù)一周的銷售數(shù)據(jù)得出周銷售量(件)與單價(jià)(元)之間的關(guān)系如下圖所示,該網(wǎng)店與這種商品有關(guān)的周開支均為25元.
(1)根據(jù)周銷售量圖寫出(件)與單價(jià)(元)之間的函數(shù)關(guān)系式;
(2)寫出利潤(元)與單價(jià)(元)之間的函數(shù)關(guān)系式;當(dāng)該商品的銷售價(jià)格為多少元時(shí),周利潤最大?并求出最大周利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的圖象中相鄰兩條對(duì)稱軸之間的距離為,且直線是其圖象的一條對(duì)稱軸.
(1)求,的值;
(2)在圖中畫出函數(shù)在區(qū)間上的圖象;
(3)將函數(shù)的圖象上各點(diǎn)的橫坐標(biāo)縮短為原來的(縱坐標(biāo)不變),再把得到的圖象向左平移個(gè)單位,得到的圖象,求單調(diào)減區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1) 試說明函數(shù)的圖象是由函數(shù)的圖象經(jīng)過怎樣的變換得到的;
(2)若函數(shù),試判斷函數(shù)的奇偶性,并用反證法證明函數(shù)的最小正周期是;
(3)求函數(shù)的單調(diào)區(qū)間和值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為、,離心率,點(diǎn)在橢圓上.
(1)求橢圓的方程;
(2)設(shè)過點(diǎn)且不與坐標(biāo)軸垂直的直線交橢圓于、兩點(diǎn),線段的垂直平分線與軸交于點(diǎn),求點(diǎn)的橫坐標(biāo)的取值范圍;
(3)在第(2)問的條件下,求面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com