已知sin(θ-
π
4
)=2cos(θ+
π
4
),則
sin(
π
2
+θ)-3cos(π-θ)
sin(
π
2
-θ)-2sin(π-θ)
=( 。
A、-4
B、-2
C、
4
3
D、-1
考點(diǎn):兩角和與差的余弦函數(shù),運(yùn)用誘導(dǎo)公式化簡求值,兩角和與差的正弦函數(shù)
專題:三角函數(shù)的求值,三角函數(shù)的圖像與性質(zhì)
分析:利用兩角和與差的三角函數(shù)化簡已知條件求出sinθ與cosθ的關(guān)系,通過誘導(dǎo)公式化簡所求表達(dá)式,得到結(jié)果.
解答: 解:∵sin(θ-
π
4
)=2cos(θ+
π
4
),∴
2
2
sinθ-
2
2
cosθ
=
2
cosθ-
2
sinθ
,
∴sinθ=cosθ.
sin(
π
2
+θ)-3cos(π-θ)
sin(
π
2
-θ)-2sin(π-θ)
=
cosθ+3cosθ
cosθ-2sinθ
=-4.
故選:A.
點(diǎn)評:本題考查誘導(dǎo)公式以及兩角和與差的三角函數(shù)的應(yīng)用,基本知識的考查.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知圓錐的母線長為8,底面周長為6π,則它的體積為( 。
A、9
55
π
B、9
55
C、3
55
π
D、3
55

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

1
-1
4-x2
dx=( 。
A、2
3
B、2π
C、
2
3
π+
3
D、
5
4
π+
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

三角形ABC中,A,B,C的對邊分別為a,b,c,已知下列條件:
①b=3,c=4,B=30°;
②a=5,b=8,A=30°;
③c=6,b=3
3
,B=60°;
④c=9,b=12,C=60°
其中滿足上述條件的三角形有兩解的是( 。
A、①②B、①④C、①②③D、③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z=1-i,那么|z|=( 。
A、0
B、1
C、
2
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+1,且g(x)=f[f(x)],G(x)=g(x)-2af(x)
(1)若a=3,求函數(shù)G(x)的最小值;
(2)是否存在實(shí)數(shù)a使得G(x)在(-∞,-1)上為減函數(shù),在(-1,0)為增函數(shù)?若存在,求出實(shí)數(shù)a的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
m
=(sinωx+cosωx,
3
cosωx),
n
=(cosωx-sinωx,2sinωx)(ω>0).若f(x)=
m
n
,且f(x)相鄰兩對稱軸間的距離等于
π
2

(1)求ω的值;
(2)在△ABC中,a,b,c分別是角A,B,C的對邊,a=
3
,b+c=3(b>c),f(A)=1,求邊b,c的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C的方程為
x2
a2
+
y2
b2
=1(a>0,b>0),短軸長為2
3
,離心率為
1
2

(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線l:y=kx+m(|k|≤
1
2
)與橢圓C相交于A、B兩點(diǎn),以線段OA、OB為鄰邊作平行四邊形OAPB,其中頂點(diǎn)P在橢圓C上,O為坐標(biāo)原點(diǎn),求|OP|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)F(1,0),直線l:x=-1,動點(diǎn)P到點(diǎn)F的距離與到直線l的距離相等.
(Ⅰ)求動點(diǎn)P的軌跡C的方程;
(Ⅱ)直線y=
3
x+b與曲線C交于A,B兩點(diǎn),若曲線C上存在點(diǎn)D使得四邊形FABD為平行四邊形,求b的值.

查看答案和解析>>

同步練習(xí)冊答案