6.某班包括男生甲和女生乙在內(nèi)共有6名班干部,其中男生4人,女生2人,從中任選3人參加義務(wù)勞動(dòng). 
(1)求男生甲或女生乙被選中的概率;
(2)設(shè)“男生甲被選中”為事件A,“女生乙被選中”為事件B,求P(A)和P(A|B).

分析 (1)利用古典概型的概率計(jì)算公式和組合數(shù)公式計(jì)算;
(2)利用組合數(shù)公式計(jì)算.

解答 解:(1)從6人中任選3人,共有${C}_{6}^{3}$=20種選法,
其中男生甲和女生乙都不被選中的概率為=$\frac{{C}_{4}^{3}}{20}$=$\frac{1}{5}$.
∴男生甲或女生乙被選中的概率為1-$\frac{1}{5}$=$\frac{4}{5}$.
(2)P(A)=$\frac{{C}_{5}^{2}}{20}=\frac{1}{2}$,P(B)=$\frac{1}{2}$,P(AB)=$\frac{{C}_{4}^{1}}{20}=\frac{1}{5}$.
P(A|B)=$\frac{P(AB)}{P(B)}=\frac{2}{5}$.

點(diǎn)評 考查了隨機(jī)事件的概率和條件概率公式等知識,考查學(xué)生的計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.“a<-2“是函數(shù)f(x)=ax+3在區(qū)間[-1,2]上存在零點(diǎn)”的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.用反證法證明“平面四邊形中至少有一個(gè)內(nèi)角不超過90°”,下列假設(shè)中正確的是 ( 。
A.假設(shè)有兩個(gè)內(nèi)角超過90°B.假設(shè)有三個(gè)內(nèi)角超過90°
C.假設(shè)至多有兩個(gè)內(nèi)角超過90°D.假設(shè)四個(gè)內(nèi)角均超過90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知a>b,則下列不等式恒成立的是( 。
A.a2>b2B.$\frac{1}{a}$<$\frac{1}$C.a2>abD.a2+b2>2ab

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知命題p:復(fù)數(shù)z=(a-2)+(a2-3a-4)i(i為虛數(shù)單位,a∈R),z對應(yīng)的點(diǎn)位于復(fù)平面的第一象限內(nèi);命題q:|a-1|≥sinx對任意x∈R都成立,若命題“p∨q”為真命題,命題“p∧q”為假命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=|x-1|-|x|+a.
(1)若a=0,求不等式f(x)≥0的解集;
(2)若方程f(x)+x=0有三個(gè)不同的解,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知復(fù)數(shù)z=$\frac{2-i}{i}$(i為虛數(shù)單位),則復(fù)數(shù)z的實(shí)部為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知函數(shù)f(x)=ax3+(a+2)x2-1(x∈R)為偶函數(shù),則曲線y=f(x)在點(diǎn)(2,f(2))處的切線的方程為8x-y-9=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.某企業(yè)生產(chǎn)的一種產(chǎn)品的廣告費(fèi)用x(單位:萬元)與銷售額y(單位:萬元)的統(tǒng)計(jì)數(shù)據(jù)如表:
 廣告費(fèi)用x 1 2 3 4 5
 銷售額y 10 15 25 45 55
(1)根據(jù)上述數(shù)據(jù),求出銷售額y(萬元)關(guān)于廣告費(fèi)用x(萬元)的線性回歸方程;
(2)如果企業(yè)要求該產(chǎn)品的銷售額不少于36萬元,則投入的廣告費(fèi)用應(yīng)不少于多少萬元?
(參考數(shù)值:$\sum_{i=1}^{5}{x}_{i}=15$,$\sum_{i=1}^{5}{y}_{i}=150$,$\sum_{i=1}^{5}{x}_{i}{y}_{i}=570$,$\sum_{i=1}^{5}{{x}_{i}}^{2}=55$,$\sum_{i=1}^{5}{{y}_{i}}^{2}=6000$.

回歸直線的斜率和截距的最小二乘估計(jì)公式分別為:$\widehat=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n\stackrel{-2}{x}}$,$\widehat{a}=\overline{y}-\widehat\overline{x}$)

查看答案和解析>>

同步練習(xí)冊答案