5.設$\frac{{(1+2x{)^9}}}{{{{(1+x)}^5}}}$=a0+a1x+a2x2+a3x3+a4x4+$\frac{{{b_0}+{b_1}x+{b_2}{x^2}+{b_3}{x^3}+{b_4}{x^4}}}{{{{(1+x)}^5}}}$,其中ai,bi為實數(shù)(i=0,1,2,3,4),則a3=-256.

分析 等式兩邊乘以(1+x)5,對比兩邊x9的系數(shù)得${a_4}={2^9}$,對比兩邊x8的系數(shù)得$5{a_4}+{a_3}=C_9^8{2^8}$,從而求得a3的值.

解答 解:等式兩邊乘以(1+x)5
可得(1+2x)9=(a0+a1x+a2x2+a3x3+a4x4)•(1+x)5+b0+b1x+b2x2+b3x3+b4x4,
對比兩邊x9的系數(shù)得 ${C}_{9}^{9}$•29=${a_4}={2^9}$,對比兩邊x8的系數(shù)得$5{a_4}+{a_3}=C_9^8{2^8}$,
∴${a_3}=C_9^8×{2^8}-5×{2^9}=-256$,
故答案為:-256.

點評 本題主要考查二項式定理的應用,二項展開式的通項公式,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

15.已知函數(shù) f(x)=ex-1-ex.
(1)求函數(shù)f(x)的單調(diào)區(qū)間.
(2)設a∈R,求函數(shù)f(x)在區(qū)間[a,a+1]上的最小值g(a).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.在△ABC中,角A、B、C所對的邊分別為a,b,c,且sinA,sinB,sinC成等比數(shù)列.
(Ⅰ)若a+c=$\sqrt{3}$,B=60°,求a,b,c的值;
(Ⅱ)求角B的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.設函數(shù)f(x)=3|x|,則f(x)在區(qū)間(m-1,2m)上不是單調(diào)函數(shù),則實數(shù)m的取值范圍是(0,1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.若${(1-\sqrt{2})^5}$=a+b$\sqrt{2}$(a,b為有理數(shù)),則a+b=( 。
A.32B.12C.0D.-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.半徑為1,圓心角為$\frac{2}{3}π$的扇形卷成一個圓錐,則它的體積為( 。
A.$\frac{{2\sqrt{2}π}}{81}$B.$\frac{{2\sqrt{2}π}}{27}$C.$\frac{π}{27}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.如圖,在四棱錐S-ABCD中,AB⊥AD,AB∥CD,CD=3AB=3,平面SAD⊥平面ABCD,E是線段AD上一點,AE=ED=$\sqrt{3}$,SE⊥AD.
(I)證明:BE⊥SC
(II)(文)若SE=1,求點E到平面SBC的距離.
(理)若SE=1,求二面角B-SC-D平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知tanα=$\frac{1}{7}$,sinβ=$\frac{{\sqrt{10}}}{10}$,α,β∈(0,$\frac{π}{2}$),求α+2β

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知tanα=2,則sinαcosα+2cos2α=$\frac{4}{5}$.

查看答案和解析>>

同步練習冊答案