已知集合A={(x,y)||x|≤2,|y|≤2,x,y∈Z},集合B={(x,y)|(x-2)2+(y-2)2≤4,x,y∈Z},在集合A中任取一個元素p,則p∈B的概率是( 。
A、
2
5
B、
3
5
C、
6
25
D、
4
25
考點(diǎn):幾何概型
專題:計算題,概率與統(tǒng)計
分析:因為x,y∈Z,且|x|≤2,|y|≤2,基本事件是有限的,所以為古典概型,這樣求得總的基本事件的個數(shù),再求得滿足x,y∈Z,且(x-2)2+(y-2)2≤4的基本事件的個數(shù),然后求比值即為所求的概率.
解答: 解:如圖,點(diǎn)P所在的區(qū)域為正方形ABCD的內(nèi)部(含邊界)的整數(shù)點(diǎn),共有5×5=25,
滿足(x-2)2+(y-2)2≤4的點(diǎn)的區(qū)域為以(2,2)為圓心,2為半徑的圓面(含邊界)的整數(shù)點(diǎn),有(0,2),(1,1),(1,2),(2,0),(2,1),(2,2),共6個.
∴所求的概率為P=
6
25

故選C.
點(diǎn)評:本題考查古典概型,考查等可能事件的概率,確定基本事件的個數(shù)是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M={0,2,4,6},集合Q={0,1,3,5},則M∪Q等于( 。
A、{0}
B、{0,1,2,3,4,5,6}
C、{1,2,3,4,5,6,}
D、{0,3,4,5,6}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(1,sinx)
,
b
=(cos(2x+
π
3
),sinx)
,函數(shù)f(x)=
a
b

(1)求函數(shù)f(x)的解析式及其單調(diào)遞增區(qū)間;
(2)在△ABC中,角C為鈍角,若f(
C
2
)=-
1
4
,a=2,c=2
3
.求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)曲線y=
x
,直線x=1,x軸所圍成的平面區(qū)域為M,Ω={(x.y)|
0≤x≤1
0≤y≤1
,向區(qū)域Ω內(nèi)隨機(jī)設(shè)一點(diǎn)A,則點(diǎn)A落在M內(nèi)的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:x2+y2-8x+4y+16=0,直線l過定點(diǎn)(4,0).
(1)若直線l與方向向量為a=(1,3)的直線l1垂直,求原點(diǎn)到直線l的距離
(2)直線l與圓C相交于A,B兩點(diǎn),若△ABC的面積為
8
5
,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義某種運(yùn)算?,a?b的運(yùn)算原理如圖所示,設(shè)f(x)=(0?x)x-(2?x).f(2)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙兩人進(jìn)行投籃,每人各投4個球,甲投籃命中的概率為
1
2
,乙投監(jiān)命中的概率為
2
3
,兩人相互不受影響,每次投籃結(jié)果也不受影響.
(1)求甲至多命中2個且乙至少命中3個的概率;
(2)若規(guī)定每投籃一次命中得3分,未命中和-1分,求乙所得分?jǐn)?shù)η的分布列與期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將甲、乙、丙、丁四名志愿者分到三個不同的社區(qū)進(jìn)行社會服務(wù),每個社區(qū)至少分到一名志愿者,則不同分法的種數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和為Sn滿足Sn=n2+bn(b為常數(shù)),且對于任意的k∈N*,ak,a2k,a4k成等比數(shù)列,數(shù)列{
1
anan+1 
}
的前n項和為Tn(n∈N*)
(1)求數(shù)列{an}的通項公式
(2)求使不等式Tn
6
25
成立的n最大值.

查看答案和解析>>

同步練習(xí)冊答案