7.已知復(fù)數(shù)z滿足(3+5i)z=34,則z=( 。
A.-3+5iB.-3-5iC.3+5iD.3-5i

分析 利用復(fù)數(shù)的運(yùn)算法則、共軛復(fù)數(shù)的定義即可得出.

解答 解:∵(3+5i)z=34,
∴z=$\frac{34}{3+5i}$=$\frac{34(3-5i)}{(3+5i)(3-5i)}$=3-5i.
則z=3-5i.
故選:D.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的運(yùn)算法則、共軛復(fù)數(shù)的定義,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=logax(a>0,a≠1),當(dāng)0<x1<x2時(shí),試比較f($\frac{{x}_{1}+{x}_{2}}{2}$)與$\frac{1}{2}$[f(x1)+f(x2)]的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知f(x)=$\left\{\begin{array}{l}{-{x}^{2},x≥0}\\{{x}^{2}+2x,x<0}\end{array}\right.$,則f(f(x))≤3的解集為( 。
A.(-∞,-3]B.[-3,+∞)C.(-∞,$\sqrt{3}$]D.[$\sqrt{3}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的左、右焦點(diǎn)分別為F1、F2,點(diǎn)$A(\frac{{\sqrt{15}}}{2},\frac{1}{2})$是以F1F2為直徑的圓與雙曲線的一交點(diǎn).
(1)求雙曲線的方程;
(2)若P為該雙曲線上任意一點(diǎn),直線PF1、PF2分別交雙曲線于M、N兩點(diǎn),$\overrightarrow{P{F_1}}={λ_1}\overrightarrow{{F_1}M}({λ_1}≠-1)$,$\overrightarrow{P{F_2}}={λ_2}\overrightarrow{{F_2}N}({λ_2}≠-1)$,請(qǐng)判斷λ12是否為定值,若是,求出該定值;若不是請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.P是△ABC內(nèi)一點(diǎn).△ABC,△ABP.△ACP的面積分別對(duì)應(yīng)記為S,S1,S2.已知$\overrightarrow{CP}$=$\frac{3λ}{4}$$\overrightarrow{CA}$+$\frac{λ}{4}$$\overrightarrow{CB}$,其中λ∈(0,1).若$\frac{S}{{S}_{1}}$=3則$\frac{{S}_{2}}{{S}_{1}}$=( 。
A.1B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.函數(shù)y=$\sqrt{lo{g}_{\frac{1}{2}}(x-3)}$的定義域是(3,4].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.設(shè)集合A={x|-1<x<4},B={-1,1,2,4},則A∩B=(  )
A.{1,2}B.{-1,4}C.{-1,2}D.{2,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.求證:
(1)1+tan2α=$\frac{1}{co{s}^{2}α}$;
(2)tan2αsin2α=tan2α-sin2α;
(3)sin4α+cos4α=1-2sin2αcos2α;
(4)$\frac{1-2sinxcosx}{co{s}^{2}x-si{n}^{2}x}$=$\frac{1-tanx}{1+tanx}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.兩種大小不同的鋼板可按下表截成A,B,C三種規(guī)格成品:
A規(guī)格B規(guī)格C規(guī)格
第一種鋼板211
第二種鋼板124
某建筑工地至少需A,B,C三種規(guī)格的成品分別為6,6,8塊,問(wèn)怎樣截這兩種鋼板,可得所需三種規(guī)格成品,且所用總鋼板張數(shù)最小,最小值是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案