【題目】關于函數(shù)有下述四個結論,其中正確的結論是( )
A.f(x)是偶函數(shù)B.f(x)在區(qū)間(,)單調遞增
C.f(x)在有4個零點D.f(x)的最大值為2
【答案】AD
【解析】
根據(jù)絕對值的意義,結合三角函數(shù)的圖象和性質逐一進行判斷即可.
解:f(﹣x)=sin|﹣x|+|sin(﹣x)|=sin|x|+|sinx|=f(x)則函數(shù)f(x)是偶函數(shù),
故A正確;
當x∈(,π)時,sin|x|=sinx,|sinx|=sinx,
則f(x)=sinx+sinx=2sinx為減函數(shù),故B錯誤;
當0≤x≤π時,f(x)=sin|x|+|sinx|=sinx+sinx=2sinx,
由f(x)=0得2sinx=0得x=0或x=π,
由f(x)是偶函數(shù),得在[﹣π,0)上還有一個零點x=﹣π,即函數(shù)f(x)在[﹣π,π]有3個零點,故C錯誤;
當sin|x|=1,|sinx|=1時,f(x)取得最大值2,故D正確,
故選AD
科目:高中數(shù)學 來源: 題型:
【題目】為了保障全國第四次經濟普查順利進行,國家統(tǒng)計局從東部選擇江蘇,從中部選擇河北. 湖北,從西部選擇寧夏,從直轄市中選擇重慶作為國家綜合試點地區(qū),然后再逐級確定普查區(qū)域,直到基層的普查小區(qū).在普查過程中首先要進行宣傳培訓,然后確定對象,最后入戶登記.由于種種情況可能會導致入戶登記不夠順利,這為正式普查提供了寶貴的試點經驗.在某普查小區(qū),共有 50 家企事業(yè)單位,150 家個體經營戶,普查情況如下表所示:
普查對象類別 | 順利 | 不順利 | 合計 |
企事業(yè)單位 | 40 | 50 | |
個體經營戶 | 50 | 150 | |
合計 |
(1)寫出選擇 5 個國家綜合試點地區(qū)采用的抽樣方法;
(2)補全上述列聯(lián)表(在答題卡填寫),并根據(jù)列聯(lián)表判斷是否有的把握認為“此普查小區(qū)的入戶登記是否順利與普查對象的類別有關”;
(3)根據(jù)該試點普查小區(qū)的情況,為保障第四次經濟普查的順利進行,請你從統(tǒng)計的角度提出一條建議.
附:
0.10 | 0.010 | 0.001 | |
2.706 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學校研究性學習小組對該校高三學生視力情況進行調查,在高三的全體1000名學生中隨機抽取了100名學生的體檢表,并得到如圖的頻率分布直方圖.
(1)若直方圖中后四組的頻數(shù)成等差數(shù)列,試估計全年級視力在5.0以下的人數(shù);
(2)學習小組成員發(fā)現(xiàn),學習成績突出的學生,近視的比較多,為了研究學生的視力與學習成績是否有關系,對年級名次在1~50名和951~1000名的學生進行了調查,得到右表中數(shù)據(jù),根據(jù)表中的數(shù)據(jù),能否在犯錯的概率不超過0.05的前提下認為視力與學習成績有關系?
(3)在(2)中調查的100名學生中,按照分層抽樣在不近視的學生中抽取了9人,進一步調查他們良好的護眼習慣,并且在這9人中任取3人,記名次在1~50的學生人數(shù)為,求的分布列和數(shù)學期望.
附:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知,下列結論中錯誤的是( )
A. 既是偶函數(shù)又是周期函數(shù) B. 的最大值是1
C. 的圖像關于點對稱 D. 的圖像關于直線對稱
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,分別過橢圓左、右焦點的動直線相交于點,與橢圓分別交于與不同四點,直線的斜率滿足, 已知與軸重合時, .
(1)求橢圓的方程;
(2)是否存在定點使得為定值,若存在,求出點坐標并求出此定值,若不存在,
說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2018年為我國改革開放40周年,某事業(yè)單位共有職工600人,其年齡與人數(shù)分布表如下:
年齡段 | ||||
人數(shù)(單位:人) | 180 | 180 | 160 | 80 |
約定:此單位45歲59歲為中年人,其余為青年人,現(xiàn)按照分層抽樣抽取30人作為全市慶祝晚會的觀眾.
(1)抽出的青年觀眾與中年觀眾分別為多少人?
(2)若所抽取出的青年觀眾與中年觀眾中分別有12人和5人不熱衷關心民生大事,其余人熱衷關心民生大事.完成下列2×2列聯(lián)表,并回答能否有90%的把握認為年齡層與熱衷關心民生大事有關?
熱衷關心民生大事 | 不熱衷關心民生大事 | 總計 | |
青年 | 12 | ||
中年 | 5 | ||
總計 | 30 |
(3)若從熱衷關心民生大事的青年觀眾(其中1人擅長歌舞,3人擅長樂器)中,隨機抽取2人上臺表演節(jié)目,則抽出的2 人能勝任的2人能勝任才藝表演的概率是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】互聯(lián)網正在改變著人們的生活方式,在日常消費中手機支付正逐漸取代現(xiàn)金支付成為人們首選的支付方式. 某學生在暑期社會活動中針對人們生活中的支付方式進行了調查研究. 采用調查問卷的方式對100名18歲以上的成年人進行了研究,發(fā)現(xiàn)共有60人以手機支付作為自己的首選支付方式,在這60人中,45歲以下的占,在仍以現(xiàn)金作為首選支付方式的人中,45歲及以上的有30人.
(1)從以現(xiàn)金作為首選支付方式的40人中,任意選取3人,求這3人至少有1人的年齡低于45歲的概率;
(2)某商家為了鼓勵人們使用手機支付,做出以下促銷活動:凡是用手機支付的消費者,商品一律打八折. 已知某商品原價50元,以上述調查的支付方式的頻率作為消費者購買該商品的支付方式的概率,設銷售每件商品的消費者的支付方式都是相互獨立的,求銷售10件該商品的銷售額的數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某汽車廠上年度生產汽車的投入成本為10萬元/輛,出廠價為12萬元/輛,年銷售量為10000輛.本年度為適應市場需求,計劃提高產品質量,適度增加投入成本.若每輛車投入成本增加的比例為(),則出廠價相應地提高比例為,同時預計年銷售量增加的比例為,已知年利潤=(出廠價-投入成本)×年銷售量.
(1)寫出本年度預計的年利潤與投入成本增加的比例的關系式;
(2)為使本年度的年利潤比上年度有所增加,則投入成本增加的比應在什么范圍內?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com