【題目】某學(xué)習(xí)小組通過對某商場一種品牌服裝銷售情況的調(diào)查發(fā)現(xiàn):該服裝在過去的一個月內(nèi)(天計),日銷售量 ()與時間x ()的部分數(shù)據(jù)如下表所示,給出以下四種函數(shù)模型: ,② ,③ .請你根據(jù)上表中的數(shù)據(jù),從中選擇你認為最合適的一種函數(shù)來描述日銷售量()與時間x()的變化關(guān)系,請將你選擇的函數(shù)序號填寫在橫線上__________.(不需要求出具體解析式)

x ()

10

20

25

30

()

110

120

125

120

【答案】

【解析】

先閱讀題意,再對圖表數(shù)據(jù)進行處理,然后結(jié)合各函數(shù)的單調(diào)性逐一檢驗即可得解.

解:由圖表中的信息可得:日銷售量()與時間x()的關(guān)系不單調(diào),

又由①,③ ,④為單調(diào)函數(shù),故不能描述日銷售量()與時間x()的變化關(guān)系,對于② ,當(dāng)時,函數(shù)先增后減,可以描述日銷售量()與時間x()的變化關(guān)系,

故最合適的一種函數(shù)來描述日銷售量()與時間x()的變化關(guān)系的為②,

故答案為:②.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】新高考3+3最大的特點就是取消文理科,除語文、數(shù)學(xué)、外語之外,從物理、化學(xué)、生物、政治、歷史、地理這6科中自由選擇三門科目作為選考科目.某研究機構(gòu)為了了解學(xué)生對全理(選擇物理、化學(xué)、生物)的選擇是否與性別有關(guān)決定從某學(xué)校高一年級的650名學(xué)生中隨機抽取男生、女生各25人進行模擬選科經(jīng)統(tǒng)計,選擇全理的人數(shù)比不選全理的人數(shù)多10

1)請完成下面的2×2列聯(lián)表;

選擇全理

不選擇全理

合計

男生

5

女生

合計

2)估計有多大把握認為選擇全理與性別有關(guān),并說明理由.

附:,其中na+b+c+d

PK2k

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.076

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若函數(shù)存在兩個極值,求的取值范圍;并證明:函數(shù)存在唯一零點.

2)若存在實數(shù),,使,且,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知的頂點邊上中線所在直線方程為邊上的高所在直線方程為,求:

1)頂點的坐標(biāo);

2)求外接圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面,.

(Ⅰ)求證:平面

(Ⅱ)求直線與平面所成角的正弦值;

(Ⅲ)若二面角的余弦值為,求線段的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)若,求處的切線方程;

(Ⅱ)若對任意均有恒成立,求實數(shù)的取值范圍;

(Ⅲ)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy,橢圓的離心率為,橢圓上動點到一個焦點的距離的最小值為

(1)求橢圓C的標(biāo)準方程;

(2)已知過點的動直線l與橢圓C交于 AB 兩點,試判斷以AB為直徑的圓是否恒過定點,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為慶祝國慶節(jié),某中學(xué)團委組織了歌頌祖國,愛我中華知識競賽,從參加考試的學(xué)生中抽出60名,將其成績(成績均為整數(shù))分成[40,50),[5060),[90,100)六組,并畫出如圖所示的部分頻率分布直方圖,觀察圖形,回答下列問題:

1)求第四組的頻率,并補全這個頻率分布直方圖;

2)請根據(jù)頻率分布直方圖,估計樣本的眾數(shù)、中位數(shù)和平均數(shù).(每組數(shù)據(jù)以區(qū)間的中點值為代表)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在斜三棱柱中,底面是等腰三角形,,的中點,側(cè)面底面.

1)求證:;

2)過側(cè)面的對角線的平面交側(cè)棱于點,若,求證:截面側(cè)面;

3)若截面平面,成立嗎?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案