【題目】已知函數(shù),.
(1)若函數(shù)存在兩個(gè)極值,求的取值范圍;并證明:函數(shù)存在唯一零點(diǎn).
(2)若存在實(shí)數(shù),,使,且,求的取值范圍.
【答案】(1);證明見(jiàn)解析;(2)
【解析】
(1)求出的導(dǎo)數(shù),結(jié)合二次函數(shù)的性質(zhì)得到關(guān)于的不等式組,解出即得的范圍;令
,求出,得到至多有一個(gè)零點(diǎn),再驗(yàn)證,即可證明;
(2)求出,以及,設(shè),記,根據(jù)導(dǎo)數(shù)與單調(diào)性,最值的應(yīng)用,即可求解.
由題意,
所以方程有兩個(gè)不相等的正實(shí)數(shù)根,不妨設(shè),則
,解得:,
所以的取值范圍為;
由題易知在處取得極大值,當(dāng)處取得極小值,且有
,故,
令,故,
令,解得,
由導(dǎo)數(shù)與函數(shù)的最值可知:
故,所以至多有一個(gè)零點(diǎn),
又因,
所以函數(shù)存在唯一零點(diǎn);
由題意知:,
即,
故,
設(shè),記
則,
所以在定義域上單調(diào)遞減,所以,
即,
故的取值范圍.為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)是上的奇函數(shù).
(1)求的值;
(2)證明在上單調(diào)遞減;
(3)若對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù), 是函數(shù)的導(dǎo)函數(shù),則的圖象大致是( )
A. [Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/12/1922378615128064/1923439395356672/STEM/8f50d3dfba9b485fac00e42a95909498.png] B. [Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/12/1922378615128064/1923439395356672/STEM/74ae44978a70424c961e850ed79072da.png]
C. [Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/12/1922378615128064/1923439395356672/STEM/2f113f7ec5294ba0bbd1f66b13f3e152.png] D. [Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/12/1922378615128064/1923439395356672/STEM/dbaa9025ccdb497380b769e5396c4c19.png]
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[選修4―4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系,曲線的參數(shù)方程為(為參數(shù),).在以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,曲線.
(1)說(shuō)明是哪種曲線,并將的方程化為極坐標(biāo)方程;
(2)已知與的交于,兩點(diǎn),且過(guò)極點(diǎn),求線段的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知的展開(kāi)式中,前三項(xiàng)系數(shù)的絕對(duì)值成等差數(shù)列.
(1)求;
(2)求第三項(xiàng)的二項(xiàng)式系數(shù)及展開(kāi)式中的系數(shù);
(3)求展開(kāi)式中系數(shù)的絕對(duì)值最大的項(xiàng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱柱中,、分別是、的中點(diǎn).
(1)設(shè)棱的中點(diǎn)為,證明: 平面;
(2)若,,,且平面平面,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)習(xí)小組通過(guò)對(duì)某商場(chǎng)一種品牌服裝銷(xiāo)售情況的調(diào)查發(fā)現(xiàn):該服裝在過(guò)去的一個(gè)月內(nèi)(以天計(jì)),日銷(xiāo)售量 (件)與時(shí)間x (天)的部分?jǐn)?shù)據(jù)如下表所示,給出以下四種函數(shù)模型:① ,② ,③ ④.請(qǐng)你根據(jù)上表中的數(shù)據(jù),從中選擇你認(rèn)為最合適的一種函數(shù)來(lái)描述日銷(xiāo)售量(件)與時(shí)間x(天)的變化關(guān)系,請(qǐng)將你選擇的函數(shù)序號(hào)填寫(xiě)在橫線上__________.(不需要求出具體解析式)
x (天) | 10 | 20 | 25 | 30 |
(件) | 110 | 120 | 125 | 120 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在棱長(zhǎng)均相等的四棱錐中, 為底面正方形的中心, ,分別為側(cè)棱,的中點(diǎn),有下列結(jié)論正確的有:( )
A.∥平面B.平面∥平面
C.直線與直線所成角的大小為D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com