12.$\frac{sin(2π-α)cos(\frac{π}{3}+2α)cos(π-α)}{tan(α-3π)sin(\frac{π}{2}+α)sin(\frac{7π}{6}-2α)}$=-cosα.

分析 由三角函數(shù)誘導(dǎo)公式和整體思想,化簡可得.

解答 解:由誘導(dǎo)公式化簡可得原式=$\frac{-sinαcos(\frac{π}{3}+2α)(-cosα)}{tanαcosα[-sin(\frac{π}{6}-2α)]}$
=-$\frac{cosαcos(\frac{π}{3}+2α)}{sin[\frac{π}{2}-(\frac{π}{3}+2α)]}$=-$\frac{cosαcos(\frac{π}{3}+2α)}{cos(\frac{π}{3}+2α)}$=-cosα,
故答案為:-cosα.

點評 本題考查三角函數(shù)的化簡求值,涉及誘導(dǎo)公式和整體思想,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.$\frac{134}{3}$π所在的象限為(  )
A.第Ⅰ象限B.第Ⅱ象限C.第Ⅲ象限D.第Ⅳ象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知點C在直線AB上,且對平面任意一點O,$\overrightarrow{OC}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$,x>0,y>0,則$\frac{1}{x}$+$\frac{1}{y}$的最小值為(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.實數(shù)x,y滿足關(guān)系$\left\{\begin{array}{l}{x+y≤2}\\{x-y≥-2}\\{y≥0}\end{array}\right.$,則x2+y2的最大值是4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.求下列各正切函數(shù)值:
(1)$tan\frac{14π}{3}$;
(2)$tan\frac{7π}{6}$;
(3)$tan\frac{21π}{4}$;
(4)tan(-675°).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知f(x)是定義在R上的偶函數(shù),且x≥0時,f(x)=loga(x+1),(a>0,且a≠1).
(1)求函數(shù)f(x)的解析式;
(2)若-1<f(1)<1,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知拋物線y=-2x2和拋物線上一點P(1,-2).
(Ⅰ)求拋物線的準(zhǔn)線方程;
(Ⅱ)過點P作斜率為2,-2的直線l1,l2,分別交拋物線于A(x1,y1),B(x2,y2),設(shè)AB的中點M(x0,y0).求證:線段PM的中點Q在
 y軸上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知tanα=2,求下列各式的值
(1)$\frac{1}{{2sinxcosx+{{cos}^2}x}}$;
(2)sin2α+6sinαcosα-cos2α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=|1-2x|-|1+x|
(Ⅰ)解不等式f(x)≥4;
(Ⅱ)若函數(shù)g(x)=|1+x|+a的圖象恒在函數(shù)f(x)的圖象的上方,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案