【題目】關(guān)于直線以及平面,下面命題中正確的是( )
A. 若,則
B. 若,則
C. 若,則
D. 若,且,則
【答案】C
【解析】
利用正方體模型,舉出A、B、D三項(xiàng)的反例,得出A、B、D三項(xiàng)均為假命題,通過排除法可得C選項(xiàng)為正確答案.
以正方體為例 對(duì)于A選項(xiàng),設(shè)下底面ABCD為平面α,在上底面A1D1所在直線為a,B1D1所在直線為b,直線a、b都平行于平面α,但直線a、b不平行,故A項(xiàng)不對(duì) (如圖1)
對(duì)于B選項(xiàng),設(shè)下底面ABCD為平面α,上底面A1C1所在直線為a,B1D1所在直線為b,直線a是平面α的平行線,直線b與a垂直,但直線b與平面α不垂直,故B選項(xiàng)不對(duì)(如圖2)
對(duì)于D選項(xiàng),設(shè)下底面ABCD為平面α,直線AB、CD所在直線分別為a、b,AD1所在直線為l.可見直線a、b是平面α內(nèi)的平行線,雖然直線a、b都與直線l垂直,但直線l與平面α不垂直,故D選項(xiàng)不對(duì)(如圖3)
由A、B、D都不對(duì),得應(yīng)該選擇C選項(xiàng).
故選:C
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義在 R 上的奇函數(shù) f (x) ,設(shè)其導(dǎo)函數(shù)為 f x ,當(dāng) x ,0時(shí),恒有xf x f x 0 ,令 F x xf x,則滿足 F(3) F 2x 1 的實(shí)數(shù) x 的取值范圍是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[選修4—4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系中,曲線的方程為.以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求的直角坐標(biāo)方程;
(2)若與有且僅有三個(gè)公共點(diǎn),求的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】執(zhí)行如圖所示的程序框圖,如果輸出S=3,那么判斷框內(nèi)應(yīng)填入的條件是( )
A.k≤6
B.k≤7
C.k≤8
D.k≤9
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面上, ⊥ ,| |=| |=1, = + .若| |< ,則| |的取值范圍是( )
A.(0, ]
B.( , ]
C.( , ]
D.( , ]
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)舉行的“三色球”購(gòu)物摸獎(jiǎng)活動(dòng)規(guī)定:在一次摸獎(jiǎng)中,摸獎(jiǎng)?wù)呦葟难b有3個(gè)紅球與4個(gè)白球的袋中任意摸出3個(gè)球,再?gòu)难b有1個(gè)藍(lán)球與2個(gè)白球的袋中任意摸出1個(gè)球,根據(jù)摸出4個(gè)球中紅球與藍(lán)球的個(gè)數(shù),設(shè)一、二、三等獎(jiǎng)如下:
獎(jiǎng)級(jí) | 摸出紅、藍(lán)球個(gè)數(shù) | 獲獎(jiǎng)金額 |
一等獎(jiǎng) | 3紅1藍(lán) | 200元 |
二等獎(jiǎng) | 3紅0藍(lán) | 50元 |
三等獎(jiǎng) | 2紅1藍(lán) | 10元 |
其余情況無(wú)獎(jiǎng)且每次摸獎(jiǎng)最多只能獲得一個(gè)獎(jiǎng)級(jí).
(1)求一次摸獎(jiǎng)恰好摸到1個(gè)紅球的概率;
(2)求摸獎(jiǎng)?wù)咴谝淮蚊?jiǎng)中獲獎(jiǎng)金額x的分布列與期望E(x).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】三角形ABC中,角A、B、C所對(duì)邊分別為a,b,c,且.
(1)若cosA=,求sinC的值;
(2)若b=,a=3c,求三角形ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)z=kx+y,其中實(shí)數(shù)x,y滿足 ,若z的最大值為12,則實(shí)數(shù)k= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)
(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(2)如果不等式對(duì)于一切的恒成立,求的取值范圍;
(3)證明:不等式對(duì)于一切的恒成立.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com