14.已知雙曲線$\frac{{x}^{2}}{m}$-$\frac{{y}^{2}}{n}$=1(m>0,n>0)的離心率為2,經(jīng)過雙曲線的右焦點F(2,0)作一條直線分別交雙曲線的左、右兩支于A、B兩點,且|AB|=12,則該直線的斜率為$±\sqrt{7}$.

分析 由題意求出雙曲線的標準方程,設(shè)出直線的點斜式方程,然后聯(lián)立方程組消去y得x的方程,利用|AB|=12,建立方程,即可求直線的斜率.

解答 解:∵雙曲線$\frac{{x}^{2}}{m}$-$\frac{{y}^{2}}{n}$=1(m>0,n>0)的離心率為2,右焦點F(2,0),
∴c=2,a=1,
∴b=$\sqrt{3}$,
∴雙曲線的方程為${x}^{2}-\frac{{y}^{2}}{3}$=1,
設(shè)直線方程為y=k(x-2),代入${x}^{2}-\frac{{y}^{2}}{3}$=1,整理可得(3-k2)x2+4k2x-4k2-3=0,
∴|AB|=$\sqrt{1+{k}^{2}}$•$\sqrt{(\frac{4{k}^{2}}{{k}^{2}-3})^{2}-4×\frac{4{k}^{2}+3}{{k}^{2}-3}}$=12,
∴k=$±\sqrt{7}$.
故答案為:$±\sqrt{7}$.

點評 本題考查雙曲線的標準方程及直線與圓錐曲線的位置關(guān)系,綜合性強.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知數(shù)列{an}的前n項和為Sn,且滿足an=2Sn-1(n∈N*)
(Ⅰ)求證:數(shù)列{an}為等比數(shù)列;
(Ⅱ)若bn=(2n+1)an,求{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=log2(x+1),g(x)=log${\;}_{\frac{1}{2}}$(1-x),設(shè)F(x)=f(x)+g(x).
(Ⅰ)求F(x)的定義域,并判斷F(x)的奇偶性,請說明理由;
(Ⅱ)判斷H(x)=$\frac{1+x}{1-x}$在(1,+∞)上的單調(diào)性,并用定義加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=x|x-a|
(1)a=3時,求f(x)=x的根;
(2)若f(x)<1在x∈[$\frac{1}{2}$,$\frac{3}{2}$]上恒成立,求實數(shù)a的取值范圍;
(3)求f(x)在x∈[0,2]上的最大值g(a),并求g(a)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知f($\frac{1-x}{1+x}$)=$\frac{1-{x}^{2}}{1+{x}^{2}}$,求f(x)的解析式和定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.?dāng)?shù)集{0,1}與數(shù)集{1}可以建立1個函數(shù)關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)數(shù)列{an}為等比數(shù)列,則下面四個數(shù)列中一定是等比數(shù)列的有( 。
①{an3}
②{pan}(p為非零常數(shù))
③{an•an+1
④{an+an+1}.
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已矢集合A=B={0,1},集合C={u|u=x+y,x∈A,y∈B},則集合C的子集個數(shù)是( 。
A.4B.7C.8D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知O、A、B、C是平面內(nèi)四點,$\overrightarrow{OC}={sin^2}α\;\;\overrightarrow{OA}+{cos^2}α\;\overrightarrow{OB}$,α是銳角.
(1)證明:C在線段AB上;
(2)若α=45°,$|\overrightarrow{OA}|=|\overrightarrow{OB}|=1$,且$|\overrightarrow{OA}-\overrightarrow{OB}|=\sqrt{2}$,求$|\overrightarrow{OC}|$.

查看答案和解析>>

同步練習(xí)冊答案