【題目】等比數(shù)列{an}中,已知a1=2,a4=16
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若a3 , a5分別為等差數(shù)列{bn}的第3項(xiàng)和第5項(xiàng),試求數(shù)列{bn}的通項(xiàng)公式及前n項(xiàng)和Sn

【答案】
(1)解:設(shè){an}的公比為q

由已知得16=2q3,解得q=2

=2n


(2)解:由(1)得a3=8,a5=32,則b3=8,b5=32

設(shè){bn}的公差為d,則有

解得

從而bn=﹣16+12(n﹣1)=12n﹣28

所以數(shù)列{bn}的前n項(xiàng)和


【解析】(1)由a1=2,a4=16直接求出公比q再代入等比數(shù)列的通項(xiàng)公式即可.(2)利用題中條件求出b3=8,b5=32,又由數(shù)列{bn}是等差數(shù)列求出 .再代入求出通項(xiàng)公式及前n項(xiàng)和Sn

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于維向量,若對(duì)任意均有,則稱向量. 對(duì)于兩個(gè)向量定義.

(1)若, 求的值;

(2)現(xiàn)有一個(gè)向量序列: 且滿足: ,求證:該序列中不存在向量.

(3) 現(xiàn)有一個(gè)向量序列: 且滿足: ,若存在正整數(shù)使得向量序列中的項(xiàng),求出所有的.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= ,若存在實(shí)數(shù)x1 , x2 , x3 , x4 滿足f(x1)=f(x2)=f(x3)=f(x4),且x1<x2<x3<x4 , 則 的取值范圍是(
A.(20,32)
B.(9,21)
C.(8,24)
D.(15,25)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列判斷正確的是(
A.a=7,b=14,A=30°,有兩解
B.a=30,b=25,A=150°,有一解
C.a=6,b=9,A=45°,有兩解
D.a=9,b=10,A=60°,無(wú)解

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某造船公司年造船量是20,已知造船x艘的產(chǎn)值函數(shù)為R(x)3 700x45x210x3(單位:萬(wàn)元)成本函數(shù)為C(x)460x5 000(單位:萬(wàn)元)

(1)求利潤(rùn)函數(shù)P(x);(提示:利潤(rùn)=產(chǎn)值-成本)

(2)問(wèn)年造船量安排多少艘時(shí)可使公司造船的年利潤(rùn)最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù).

(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;

(2)設(shè),若對(duì)任意的,存在使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】10y1(2)x02(3),求數(shù)字x,y的值及與此兩數(shù)等值的十進(jìn)制數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù), 為常數(shù)),函數(shù)為自然對(duì)數(shù)的底).

(1)討論函數(shù)的極值點(diǎn)的個(gè)數(shù);

(2)若不等式對(duì)恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明跟父母、爺爺奶奶一同參加《中國(guó)詩(shī)詞大會(huì)》的現(xiàn)場(chǎng)錄制,5人坐成一排.若小明的父母至少有一人與他相鄰,則不同坐法的總數(shù)為

A. 60 B. 72 C. 84 D. 96

查看答案和解析>>

同步練習(xí)冊(cè)答案