【題目】(多選題)下列說法正確的是( )
A.橢圓1上任意一點(非左右頂點)與左右頂點連線的斜率乘積為
B.過雙曲線1焦點的弦中最短弦長為
C.拋物線y2=2px上兩點A(x1,y1).B(x2,y2),則弦AB經(jīng)過拋物線焦點的充要條件為x1x2
D.若直線與圓錐曲線有一個公共點,則該直線和圓錐曲線相切
【答案】A
【解析】
直線與圓錐曲線的位置關(guān)系問題,通過聯(lián)立方程組,恰當利用韋達定理,逐項判定,即可求解,得到答案.
對于A中,橢圓的左右頂點的分別為,
設(shè)橢圓上除左右頂點以外的任意一點,則,
又因為點在橢圓上,可得,解得,
所以,所以A項是正確的;
對于B中,設(shè)雙曲線右焦點,
(1)當直線與雙曲線的右支交于,
(i)當直線的斜率不存在時,則直線方程為,則,
(ii)當直線的斜率存在時,則直線方程為,
聯(lián)立方程組,得,
則,得或,
由焦半徑公式可得
,
所以當直線的斜率不存在時,的長最小,最小值為.
(2)當過的直線與雙曲線的兩支各有一個交點時,此時可得的最小值為.
綜上可得,當,即,此時過焦點的弦長最短為;
當,即,此時過焦點的弦長最短為.
所以B項是不正確的;
對于C中,充分性:當直線的斜率不存在時,直線的方程為,此時,
因為,所以,此時直線過焦點.
當直線的斜率存在時,設(shè)直線方程為,
由,得,
所以,且,
又因為且,所以,解得或,
所以直線方程為或,
當直線時,取時,,直線過焦點;
當直線時,取時,,直線過焦點;
所以充分性不成立.
必要性:當直線過焦點時,
設(shè)過焦點的直線的方程為,代入,
可得,則,
則.
所以拋物線上兩點,則弦經(jīng)過拋物線的焦點的必要不充分條件是,所以C是不正確的.
對于D中,當直線和拋物線的對稱軸平行時,滿足只有一個交點,但此時直線拋物線是相交的,所以直線與圓錐曲線有一個公共點,所以該直線和圓錐曲線相切是錯誤,即D項是不正確的.
故選:A.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長方形ABCD中,AB=2,BC=1,E為DC的中點,F為線段EC(端點除外)上一動點,現(xiàn)將△AFD沿AF折起,使平面ABD⊥平面ABC,則二面角D﹣AF﹣B的平面角余弦值的取值范圍是_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題正確的是
(1)命題“,”的否定是“,”;
(2)l為直線,,為兩個不同的平面,若,,則;
(3)給定命題p,q,若“為真命題”,則是假命題;
(4)“”是“”的充分不必要條件.
A. (1)(4)B. (2)(3)C. (3)(4)D. (1)(3)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】人造地球衛(wèi)星繞地球運行遵循開普勒行星運動定律:如圖,衛(wèi)星在以地球的中心為焦點的橢圓軌道上繞地球運行時,其運行速度是變化的,速度的變化服從面積守恒規(guī)律,即衛(wèi)星的向徑(衛(wèi)星與地心的連線)在相同的時間內(nèi)掃過的面積相等設(shè)該橢圓的長軸長、焦距分別為,.某同學(xué)根據(jù)所學(xué)知識,得到下列結(jié)論:
①衛(wèi)星向徑的取值范圍是
②衛(wèi)星向徑的最小值與最大值的比值越大,橢圓軌道越扁
③衛(wèi)星在左半橢圓弧的運行時間大于其在右半橢圓弧的運行時間
④衛(wèi)星運行速度在近地點時最小,在遠地點時最大
其中正確的結(jié)論是( )
A.①②B.①③C.②④D.①③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】卵形線是常見曲線的一種,分笛卡爾卵形線和卡西尼卵形線,卡西尼卵形線是平面內(nèi)與兩個定點(叫焦點)的距離之積等于常數(shù)的點的軌跡.某同學(xué)類比橢圓與雙曲線對卡西尼卵形線進行了相關(guān)性質(zhì)的探究,設(shè)F1(﹣c,0),F2(c,0)是平面內(nèi)的兩個定點,|PF1||PF2|=a2(a是常數(shù)).得出卡西尼卵形線的相關(guān)結(jié)論:①該曲線既是軸對稱圖形也是中心對稱圖形;②若a=c,則曲線過原點;③若0<a<c,其軌跡為線段.其中正確命題的序號是_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)不等式表示的平面區(qū)別為.區(qū)域內(nèi)的動點到直線和直線的距離之積為2.記點的軌跡為曲線.過點的直線與曲線交于、兩點.
(1)求曲線的方程;
(2)若垂直于軸,為曲線上一點,求的取值范圍;
(3)若以線段為直徑的圓與軸相切,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角梯形中,,點A是PB的中點,現(xiàn)沿AD將平面PAD折起,設(shè).
(1)當為直角時,求異面直線PC與BD所成角的大;
(2)當為多少時,三棱錐的體積為?
(3)剪去梯形中的,留下長方形紙片,在BC邊上任取一點E,把紙片沿AE折成直二面角,問E點取何處時,使折起后兩個端點間的距離最短.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com