【題目】如圖,在直角梯形中,,點(diǎn)A是PB的中點(diǎn),現(xiàn)沿AD將平面PAD折起,設(shè).
(1)當(dāng)為直角時(shí),求異面直線(xiàn)PC與BD所成角的大小;
(2)當(dāng)為多少時(shí),三棱錐的體積為?
(3)剪去梯形中的,留下長(zhǎng)方形紙片,在BC邊上任取一點(diǎn)E,把紙片沿AE折成直二面角,問(wèn)E點(diǎn)取何處時(shí),使折起后兩個(gè)端點(diǎn)間的距離最短.
【答案】(1);(2)或;(3)當(dāng)時(shí),沿AE折起后間距離最短
【解析】
(1)取PA的中點(diǎn)E,連結(jié)OE,BE,則∠BOP為PC,BD所成的角,先證 PA⊥平面ABCD,利用勾股定理求出的三邊長(zhǎng),使用余弦定理求出,進(jìn)而可得角;(2)P到平面ABCD的距離為,代入棱錐的體積公式求出得出θ的值;(3)設(shè),則,根據(jù)定理可得化簡(jiǎn),故而當(dāng)時(shí),間的距離最短,故而可得結(jié)論.
(1)∵AB∥CD,,,∴四邊形ABCD是矩形,
連結(jié)AC交BD與O,則O是AC,BD的中點(diǎn),
取PA的中點(diǎn)E,連結(jié)OE,BE,
則OE是的中位線(xiàn),∴,,
∴是異面直線(xiàn)PC,BD所成的角,
∵,,,
∴平面ABCD,
∴,,
,
∴,
∴.
即異面直線(xiàn)PC與BD所成的角為.
(2)P到平面ABCD的距離,
,
∴,
∴,
∴或.
(3)設(shè),則,折起后平面平面AECD,
則為直線(xiàn)與平面AECD所成的角.
于是,
要使最短,則折起后應(yīng)最小,最大,
∴當(dāng)即時(shí),最大,
此時(shí)最短,
即當(dāng)時(shí),沿AE折起后間距離最短.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(多選題)下列說(shuō)法正確的是( )
A.橢圓1上任意一點(diǎn)(非左右頂點(diǎn))與左右頂點(diǎn)連線(xiàn)的斜率乘積為
B.過(guò)雙曲線(xiàn)1焦點(diǎn)的弦中最短弦長(zhǎng)為
C.拋物線(xiàn)y2=2px上兩點(diǎn)A(x1,y1).B(x2,y2),則弦AB經(jīng)過(guò)拋物線(xiàn)焦點(diǎn)的充要條件為x1x2
D.若直線(xiàn)與圓錐曲線(xiàn)有一個(gè)公共點(diǎn),則該直線(xiàn)和圓錐曲線(xiàn)相切
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了選拔學(xué)生參加全市中學(xué)生物理競(jìng)賽,學(xué)校先從高三年級(jí)選取60名同學(xué)進(jìn)行競(jìng)賽預(yù)選賽,將參加預(yù)選賽的學(xué)生成績(jī)(單位:分)按范圍,,,分組,得到的頻率分布直方圖如圖:
(1)計(jì)算這次預(yù)選賽的平均成績(jī)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(2)若對(duì)得分在前的學(xué)生進(jìn)行校內(nèi)獎(jiǎng)勵(lì),估計(jì)獲獎(jiǎng)分?jǐn)?shù)線(xiàn);
(3)若這60名學(xué)生中男女生比例為,成績(jī)不低于60分評(píng)估為“成績(jī)良好”,否則評(píng)估為“成績(jī)一般”,試完成下面列聯(lián)表,是否有的把握認(rèn)為“成績(jī)良好”與“性別”有關(guān)?
成績(jī)良好 | 成績(jī)一般 | 合計(jì) | |
男生 | |||
女生 | |||
合計(jì) |
附:,
臨界值表:
0.10 | 0.05 | 0.010 | |
2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)古代數(shù)學(xué)名著《九章算術(shù)》中記載了有關(guān)特殊幾何體的定義:陽(yáng)馬指底面為矩形,一側(cè)棱垂直于底面的四棱錐,塹堵指底面是直角三角形,且側(cè)棱垂直于底面的三棱柱.
(1)某塹堵的三視圖,如圖1,網(wǎng)格中的每個(gè)小正方形的邊長(zhǎng)為1,求該塹堵的體積;
(2)在塹堵中,如圖2,,若,當(dāng)陽(yáng)馬的體積最大時(shí),求二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某人打算做一個(gè)正四棱錐形的金字塔模型,先用木料搭邊框,再用其他材料填充,已知金字塔的每一條棱和邊都相等.
(1)求證:直線(xiàn)AC垂直于直線(xiàn)SD;
(2)若搭邊框共使用木料24米,則需要多少立方米的填充材料才能將整個(gè)金字塔內(nèi)部填滿(mǎn)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某班50名學(xué)生在一次百米測(cè)試中,成績(jī)?nèi)拷橛?/span>13秒與18秒之間,將測(cè)試結(jié)果按如下方式分成五組:第一組,第二組,,第五組.下圖是按上述分組方法得到的頻率分布直方圖.按上述分組方法得到的頻率分布直方圖.
(1)若成績(jī)大于或等于14秒且小于16秒認(rèn)為良好,求該班在這次百米測(cè)試中成績(jī)良好的人數(shù);
(2)設(shè)m,n表示該班某兩位同學(xué)的百米測(cè)試成績(jī),且已知求事件“”發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng),求證;
(2)若函數(shù)有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線(xiàn)=1(a>0,b>0)的左、右焦點(diǎn)分別為F1,F2,點(diǎn)O為雙曲線(xiàn)的中心,點(diǎn)P在雙曲線(xiàn)右支上,△PF1F2內(nèi)切圓的圓心為Q,圓Q與x軸相切于點(diǎn)A,過(guò)F2作直線(xiàn)PQ的垂線(xiàn),垂足為B,則下列結(jié)論成立的是( )
A. |OA|>|OB|B. |OA|<|OB|
C. |OA|=|OB|D. |OA|與|OB|大小關(guān)系不確定
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的焦距為分別為橢圓的左、右頂點(diǎn),為橢圓上的兩點(diǎn)(異于),連結(jié),且斜率是斜率的倍.
(1)求橢圓的方程;
(2)證明:直線(xiàn)恒過(guò)定點(diǎn).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com