若函數(shù)f(x)=ax-1(x∈R)的反函數(shù)f-1(x)的圖象過(4,2),則f-1(2)=
3
2
3
2
分析:根據(jù)題意可知f-1(4)=2,然后根據(jù)原函數(shù)與反函數(shù)之間的關(guān)系可知f(2)=4,可求出a的值,然后令4x-1=2求出x,最后根據(jù)原函數(shù)與反函數(shù)之間關(guān)系求出所求.
解答:解:∵f-1(x)的圖象過(4,2),
∴f-1(4)=2即f(2)=4=a2-1,解得a=4
∴f(x)=4x-1
令4x-1=2解得x=
3
2

∴f(
3
2
)=2則f-1(2)=
3
2

故答案為:
3
2
點(diǎn)評(píng):本題主要考查了反函數(shù),以及原函數(shù)與反函數(shù)圖象的關(guān)系,同時(shí)考查了轉(zhuǎn)化的能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

①命題“對任意的x∈R,x3-x2+1≤0”的否定是“存在x∈R,x3-x2+1>0”;
②函數(shù)f(x)=2x-x2的零點(diǎn)有2個(gè);
③若函數(shù)f(x)=x2-|x+a|為偶函數(shù),則實(shí)數(shù)a=0;
④函數(shù)y=sinx(x∈[-π,π])圖象與x軸圍成的圖形的面積是S=
x
-x
sinxdx;
⑤若函數(shù)f(x)=
ax-5(x>6)
(4-
a
2
)x+4(x≤6)
,在R上是單調(diào)遞增函數(shù),則實(shí)數(shù)a的取值范圍為(1,8).
其中真命題的序號(hào)是
①③
①③
(寫出所有正確命題的編號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于函數(shù)f(x),其定義域?yàn)镈,若任取x1、x2∈D,且x1≠x2,若f(
x1+x2
2
)>
1
2
[f(x1)+f(x2)],則稱f(x)為定義域上的凸函數(shù).
(1)設(shè)f(x)=ax2(a>0),試判斷f(x)是否為其定義域上的凸函數(shù),并說明原因;
(2)若函數(shù)f(x)=㏒ax(a>0,且a≠1)為其定義域上的凸函數(shù),試求出實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=ax(a>0,a≠1)的反函數(shù)記為y=g(x),g(16)=2,則f(
12
)
=
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=ax-2+2010(a>0且a≠1)恒過一定點(diǎn),此定點(diǎn)坐標(biāo)為
(2,2011)
(2,2011)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•盧灣區(qū)一模)若函數(shù)f(x)=ax+b的零點(diǎn)為x=2,則函數(shù)g(x)=bx2-ax的零點(diǎn)是x=0和x=
-
1
2
-
1
2

查看答案和解析>>

同步練習(xí)冊答案