9.命題“?x∈(-1,+∞),ln(x+1)<x”的否定是( 。
A.?x∉(-1,+∞),ln(x+1)<xB.?x0∉(-1,+∞),ln(x0+1)<x0
C.?x∈(-1,+∞),ln(x+1)≥xD.?x0∈(-1,+∞),ln(x0+1)≥x0

分析 根據(jù)全稱命題的否定是特稱命題即可得到結(jié)論.

解答 解:∵全稱命題的否定是特稱命題,
∴命題“?x∈(-1,+∞),ln(x+1)<x”的否定是:“?x0∈(-1,+∞),ln(x0+1)≥x0”,
故選:D.

點(diǎn)評(píng) 本題主要考查含有量詞的命題的否定,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知正項(xiàng)數(shù)列{an},a1=2,(an+1)an+2=1,a2=a6,則a11+a12=$\frac{1}{9}$+$\frac{\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.在△ABC中,a,b,c分別為角A,B,C的對(duì)邊,cos2A=cosA.
(Ⅰ)求角A;
(Ⅱ)當(dāng)a=2$\sqrt{3}$,S△ABC=$\frac{{a}^{2}+^{2}-{c}^{2}}{4\sqrt{3}}$時(shí),求邊c的值和△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.執(zhí)行如圖所示的程序框圖,則輸出的S等于( 。
A.$\frac{1}{2}$B.$\frac{3}{5}$C.$\frac{5}{6}$D.$\frac{6}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知拋物線y2=2px的焦點(diǎn)F(1,0),過(guò)F作直線l交拋物線于A(x1,y1),B(x2,y2)兩點(diǎn),如圖所示,A在x軸上方.
(1)若|AB|=8時(shí),求直線l的傾斜角;
(2)設(shè)P(-1,0),求證:∠APQ=∠CPQ;
(3)設(shè)Q(2,0),AQ的延長(zhǎng)線交拋物線于C,設(shè)BC的中點(diǎn)為D,當(dāng)直線DF在y軸上的截距為m,且m∈(0,+∞),求y1取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知數(shù)列{an}的前n項(xiàng)和為Sn,且3Sn+an-3=0,n∈N*
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}滿足bn=$\frac{1}{2}{log_2}({1-{S_{n+1}}})$,求Tn=$\frac{1}{{{b_1}{b_2}}}+\frac{1}{{{b_2}{b_3}}}+…+\frac{1}{{{b_n}{b_{n+1}}}}$,求使Tn≥$\frac{504}{1009}$成立的n的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.若三棱柱ABC-A1B1C1的體積為V,P為CC1上的一點(diǎn),${V}_{P-AB{B}_{1}{A}_{1}}$=$\frac{2V}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,滿足S4=4(a3+1),3a3=5a4
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{|an|}的前n項(xiàng)和為T(mén)n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.焦點(diǎn)在x軸的橢圓,順次連接橢圓的短軸頂點(diǎn)和焦點(diǎn)形成一邊長(zhǎng)為$\sqrt{2}$的正方形,求:
(1)橢圓的標(biāo)準(zhǔn)方程;
(2)橢圓的焦點(diǎn)坐標(biāo)、頂點(diǎn)坐標(biāo)和離心率.

查看答案和解析>>

同步練習(xí)冊(cè)答案