【題目】已知圓關(guān)于直線對稱的圓為.
(1)求圓的方程;
(2)過點(diǎn)作直線與圓交于兩點(diǎn), 是坐標(biāo)原點(diǎn),是否存在這樣的直線,使得在平行四邊形中?若存在,求出所有滿足條件的直線的方程;若不存在,請說明理由.
【答案】(1)(2)存在直線和
【解析】試題分析:(1)將圓的一般方程轉(zhuǎn)化為標(biāo)準(zhǔn)方程,將圓關(guān)于直線對稱問題轉(zhuǎn)化為點(diǎn)關(guān)于直線對稱問題,進(jìn)而求出圓的方程;(2)先由條件判定四邊形為矩形,將問題轉(zhuǎn)化為判定兩直線垂直,利用平面向量是數(shù)量積為0進(jìn)行求解.
試題解析:(1)圓化為標(biāo)準(zhǔn)為,
設(shè)圓的圓心關(guān)于直線的對稱點(diǎn)為,則,
且的中點(diǎn)在直線上,
所以有,
解得: ,
所以圓的方程為.
(2)由,所以四邊形為矩形,所以.
要使,必須使,即: .
①當(dāng)直線的斜率不存在時,可得直線的方程為,與圓
交于兩點(diǎn), .
因?yàn)?/span>,所以,所以當(dāng)直線的斜率不存在時,直線滿足條件.
②當(dāng)直線的斜率存在時,可設(shè)直線的方程為.
設(shè)
由得: .由于點(diǎn)在圓內(nèi)部,所以恒成立,
,
, ,
要使,必須使,即,
也就是:
整理得:
解得: ,所以直線的方程為
存在直線和,它們與圓交兩點(diǎn),且四邊形對角線相等.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是的導(dǎo)函數(shù).
(Ⅰ)當(dāng)時,對于任意的,求的最小值;
(Ⅱ)若存在,使,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高一(1)班的一次數(shù)學(xué)測試成績的莖葉圖和頻率分布直方圖都受到不同程度的污損,可見部分如下圖:
求分?jǐn)?shù)在的頻率及全班人數(shù);
求分?jǐn)?shù)在之間的頻數(shù),并計(jì)算頻率分布直方圖中間矩形的高;
若要從分?jǐn)?shù)在之間的試卷中任取兩份分析學(xué)生失分情況,求在抽取的試卷中,至少有一份分?jǐn)?shù)在之間的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對函數(shù) ,有下列說法:
①f(x)的周期為4π,值域?yàn)閇﹣3,1];
②f(x)的圖象關(guān)于直線 對稱;
③f(x)的圖象關(guān)于點(diǎn) 對稱;
④f(x)在 上單調(diào)遞增;
⑤將f(x)的圖象向左平移 個單位,即得到函數(shù) 的圖象.
其中正確的是 . (填上所有正確說法的序號).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知矩形和菱形所在平面互相垂直,如圖,其中, , ,點(diǎn)為線段的中點(diǎn).
(Ⅰ)試問在線段上是否存在點(diǎn),使得直線平面?若存在,請證明平面,并求出的值,若不存在,請說明理由;
(Ⅱ)求二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,下列四個正方體圖形中,A、B為正方體的兩個頂點(diǎn),M、N、P分別為其所在棱的中點(diǎn),能得出AB∥平面MNP的圖形序號是( 。
A.①②
B.③④
C.②③
D.①④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在海島上有一座海拔的山峰,山頂設(shè)有一個觀察站,有一艘輪船按一固定方向做勻速直線航行,上午時,測得此船在島北偏東、俯角為的處,到時,又測得該船在島北偏西、俯角為的處.
(1)求船的航行速度;
(2)求船從到行駛過程中與觀察站的最短距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分10分)已知等差數(shù)列{an}滿足a1+a2=10,a4-a3=2.
(1)求{an}的通項(xiàng)公式.
(2)設(shè)等比數(shù)列{bn}滿足b2=a3,b3=a7.問:b6與數(shù)列{an}的第幾項(xiàng)相等?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】求適合下列條件的雙曲線的標(biāo)準(zhǔn)方程:
(1)以橢圓的長軸端點(diǎn)為焦點(diǎn),且經(jīng)過點(diǎn)P(5, );
(2)過點(diǎn)P1(3,-4 ),P2(,5).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com